

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6157 of 08/07/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	KNAPP Clip connector type MEGANT series 60, 100, 150
Product family to which the construction product belongs:	Product Area Code; 13 3D nailing plate (connector wood to wood connections and wood to concrete or steel
Manufacturer:	connections) KNAPP GmbH
	Wassergasse 31 3324 Euratsfeld Austria
Manufacturing plant(s):	KNAPP GmbH Wassergasse 31 3324 Euratsfeld Austria
This UK Technical Assessment contains:	72 pages including 7 Annexes
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 130186-00-0603 for Three Dimensional Nailing Plates

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1 Technical description of the product

1.1 General

This UK Technical Assessment (UKTA) applies to the KNAPP Clip connector type MEGANT series 60, 100, 150 to be used in load-bearing timber to timber or timber to steel or concrete connections. MEGANT consists of two connector plates installed into the timber with self-tapping screws with diameter 8 mm and to members made of steel or concrete with suitable fasteners. Clamping jaws are placed at the bottom and at the top of the connector plates and connected by a defined number of threaded rods fixed with hexagonal nuts, see Annex 1 and Annex 2. The overall thickness of MEGANT is 40 or 50 mm.

The production series MEGANT includes 15 different types of connectors for timber to timber or timber to steel connections in the following 3 configurations with variable height

- 60 mm width with two rows of screws and 40 mm thickness
- 100 mm width with three rows of screws and 40 mm thickness
- 150 mm width with four rows of screws and 50 mm thickness.

MEGANT corresponds to the specifications given in the Annexes 1, 2 and 4. The material characteristics, dimensions and tolerances of MEGANT, not indicated in these Annexes, are given in the technical file of the UK Technical Assessment.

1.2 Connector plates

The connector plates together with their most important dimensions are shown in Annex 2.

The connector plates are produced in aluminium EN 6082 according to EN 755-2.

The different types of connector plates can be adapted for wood to steel or concrete connections, see Annex 2.

1.3 Screws

The screws for installation of the two connector plates into the timber are described in Annex 1. They are made of carbon steel or stainless steel.

1.4 Clamping jaw

Clamping jaws are placed at the bottom and at the top of the connector plates to connect the two plates by threaded rods. The clamping jaw at the bottom is provided with a thread.

The clamping jaws are described in Annex 2. They are made in aluminium EN 6082 according to EN 755-2.

1.5 Threaded rods

The threaded rods (M16 or M20, property class 8.8) for connection of the connector plates by clamping jaws are described in Annex 1. They are made of carbon steel or stainless steel.

1.6 Hexagonal nuts and washers

The hexagonal nuts and washers, used to fix the threaded rods at the top of the connector, are described in Annex 1.

The hexagonal nuts are produced according to EN ISO 4032 (strength class 8.8), the washers are produced according to ISO 7090. They are made of carbon steel or stainless steel.

2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

2.1 Intended use

The KNAPP Clip connector type MEGANT series 60, 100, 150 are intended to be used in load bearing connections of timber structures as end grain to side grain, end grain to end grain or side grain to side grain connections, e.g. between beams as well as connections between timber and a concrete structure or a steel member.

The connectors are used for connections in load bearing timber structures between the following wood-based members:

- Solid timber of softwood/hardwood of strength class C24/D24 or better according to EN 338 and EN 14081-1
- Glued laminated timber of strength class GL24c or better according to EN 14080
- Glued laminated timber of hardwood according to UK Technical Assessments or national standards and regulations in force at the place of use
- Laminated veneer lumber LVL according to EN 14374 or according to UK Technical Assessments
- Solid wood members similar to glued laminated timber (typically e.g. Duo- and Triobalken) according to EN 14080 or national standards and regulations in force at the place of use
- Cross laminated timber according to UK Technical Assessments or national standards and regulations in force at the place of use
- Strand lumber (e.g. Laminated Strand Lumber Intrallam LSL, Parallam PSL) according to UK Technical Assessments or national standards and regulations in force at the place of use.

The typical installation of the connectors is shown in Annex 3.

The connectors shall be subjected to static and quasi static actions only.

The connectors are intended to be used in service classes 1 and 2 according to EN 1995-1-1.

2.2 General assumptions

MEGANT is manufactured in accordance with the provisions of the UK Technical Assessment using the manufacturing process as laid down in the technical file.

The manufacturer shall ensure that the requirements in accordance with the Clauses 1, 2 and 3 as well as with the Annexes of the UK Technical Assessment are made known to those who are concerned with design and execution of the works.

Design

The UK Technical Assessment only applies to the manufacture and use of MEGANT. Verification of stability of the works including application of loads on the connector is not subject of the UK Technical Assessment.

The following conditions shall be observed:

- Design of connections with MEGANT is carried out under the responsibility of an engineer experienced in timber structures.
- Design of the works shall account for the protection of the connections to maintain service class 1 or 2 according to EN 1995-1-1.
- MEGANT is installed correctly.
- It shall be checked in accordance with EN 1995-1-1 that splitting will not occur.

Design of connections with MEGANT may be according to EN 1995-1-1 and EN 1995-1-2 considering the Annexes of the UKTA. Standards and regulations in force at the place of use shall be considered.

Design of connections with connectors in wood to steel or concrete connections may be according to Eurocode 2, 3, 5 or 9 and Annex 5.

Packaging, transport, storage, maintenance, replacement and repair

Concerning product packaging, transport, storage, maintenance, replacement and repair it is the responsibility of the manufacturer to undertake the appropriate measures and to advise their clients on the transport, storage, maintenance, replacement, and repair of the product as they consider necessary.

Installation

It is assumed that the product will be installed according to the manufacturer's instructions or (in absence of such instructions) according to the usual practice of the building professionals.

The beam hangers shall be screwed as specified in Annex 2. In hardwood connections the screws shall be driven in predrilled holes with diameter 6 mm. The inclined screws installed into glued laminated timber of hardwood or laminated veneer lumber of hardwood may be installed without predrilling whereas the moment screws shall be predrilled.

The structural members which relate to MEGANT shall be

- torsional fixed, or for the case that the members are not torsional fixed, the characteristic load bearing capacity shall be attenuated by fR2 according to Annex 5
- wood-based members according to clause 2.1
- free from wane under the connector
- · with plane surfaces against the connector
- without virtually gap between the timber members
- with minimum spacing and edge distances are in accordance with EN 1995-1-1 or European Technical Assessment.

The rules for wood-to-wood connections are also applicable for the connection between wood to concrete or steel.

In addition, the following conditions shall be observed:

- The connector shall be close in contact with the concrete or steel over the whole face.
- The fastener shall have a diameter not less than the hole diameter minus 2 mm.

2.3 Assumed working life

The provisions made in the UK Technical Assessment are based on an assumed intended working life of MEGANT of 50 years, when installed in the works, provided that the product is subject to appropriate installation, use and maintenance (see clause 2.2). These provisions are based upon the current state of the art and the available knowledge and experience.

The indications given as to the working life of the construction product cannot be interpreted as a guarantee neither given by the product manufacturer or his representative nor by the Technical Assessment Body but are regarded only as a means for choosing the appropriate products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Characteristic	Assessment
Characteristic load bearing capacity	3.1.1
Stiffness	3.1.2
Ductility in cyclic testing	No performance assessed

3.1.1 Characteristic load bearing capacity

The characteristic load bearing capacities of the connectors are determined by calculation assisted by testing. The connectors are installed with a defined number of screws with respective nominal diameter as specified in Annex 1 and Annex 2. Kinematic restraints are defined in Annex 4.

The values of the characteristic load bearing capacities for the loading directions F_1 , M_{tor} , F_2 , M_2 , F_3 and F_{45} , as defined in Annex 4, are given in Annex 5.

If the connectors are connected to structural members made of steel or concrete, suitable fasteners are used. The same load bearing capacities shall be used as for timber-to-timber connections given in Annex 5, provided the fasteners are designed to exceed the load bearing capacities of the connector to timber connections. In addition, for loading in direction of insertion, the specifications for connections between wooden members and steel and concrete members given in Annex 5 shall be considered.

3.1.2 Stiffness

The stiffness of the connectors was determined by calculation assisted by testing. The connectors are installed with a defined number of screws with respective nominal diameter as specified in Annex 1 and Annex 2. The stiffness values are given in Annex 5.

3.2 Safety in case of fire (BWR 2)

Characteristic	Assessment
Reaction to fire	Connector plates and clamping jaws are made of aluminium and the screws, threaded rods, hexagonal nuts and washers are made of carbon steel or of stainless steel, all classified as Euroclass A1 in accordance with Commission Decision 96/603/EC as amended.
Resistance to Fire	No performance assessed

3.3 Health, hygiene and the environment (BWR 3)

Characteristic	Assessment
Content, emission and/or release of dangerous substances	No dangerous substances are released

3.4 Safety and accessibility in use (BWR 4)

Same as BWR 1 above.

3.5 Protection against noise (BWR 5)

Not relevant

3.6 Energy economy and heat retention (BWR 6)

Not relevant

3.7 Sustainable use of natural resources (BWR 7)

No performance assessed

3.8 Resistance to corrosion and deterioration

The product is intended to be used in service classes 1 and 2 according to EN 1995-1-1. The product and each member of the connection should at least be suitable for service classes 1 and 2, but not for service class 1 only.

In accordance with UKTA 130186-00-0603 and EN 1995-1-1 the connector plates and clamping jaws are made of aluminium EN 6082 according to EN 755-2 with durability class B according to EN 1999-1-1. Screws, threaded rods, hexagonal nuts and washers are made of carbon steel and galvanised or of stainless steel.

3.9 Dimensional stability

The effects of dimensional changes on the structural timber members being jointed due to varying moisture content was considered by the determination of the characteristic load bearing capacity and stiffness of the joints. Moisture content during service shall not change to such an extent that adverse deformation will occur. The conditions of Clause 2.2 shall be observed.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

According to UKAD 130186-00-0603 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as bought into UK law and amended, the system of assessment and verification of constancy of performance 2+ applies.

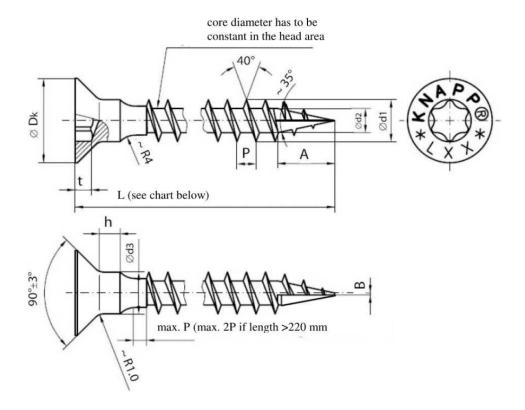
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

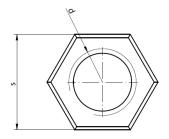
5.1 UKCA marking for the product/ system must contain the following information:

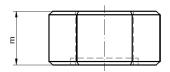
- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- · Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

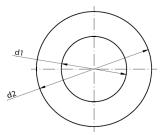
On behalf of the British Board of Agrément


Date of Issue: 8 July 2022 Hardy Giesler
Chief Executive

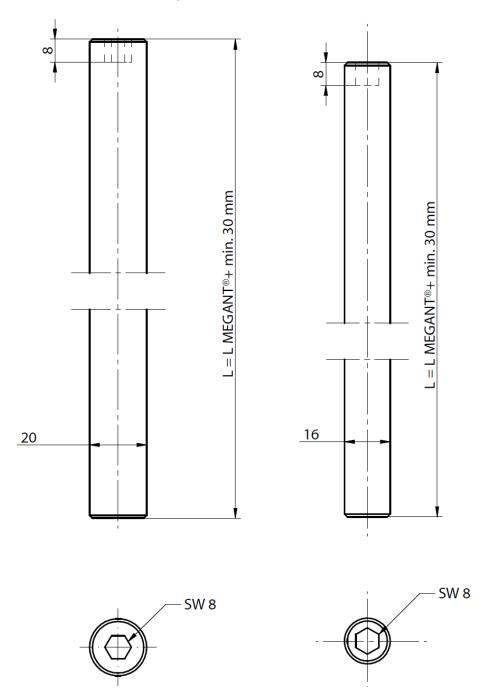
British Board of Agrément, Bucknalls Lane,

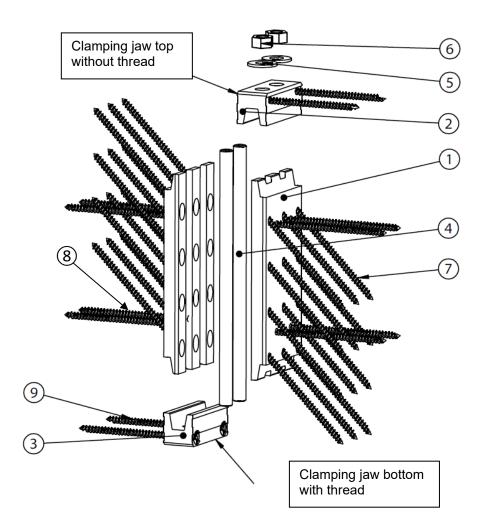

Bucknalls Lane Watford, Hertfordshire WD25 9BA


ANNEX 1: Fastener specification / self-tapping screw

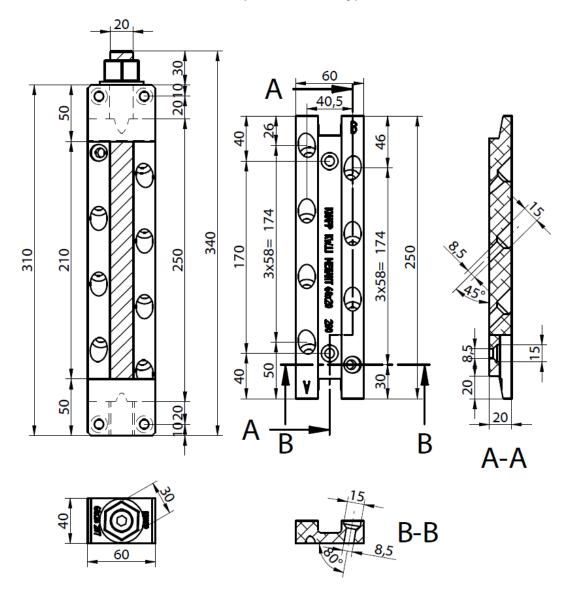

Self-tapping screw 8 x L mm				
E-Modulus	210 000 N/mm²			
Min. char. tensile strength ftens,k	20 kN			
Min. char. yield moment M _{y,k}	20 Nm			
Min. char. torsional strength ftor,k	23 Nm			
Head diameter D _k	15 mm			
Outer thread diameter d ₁	8 mm			
Inner thread diameter d ₂	5.1 mm			
Length L	80 - 240 mm			

ANNEX 1: MEGANT® / Fastener specification / hexagonal nut and washer

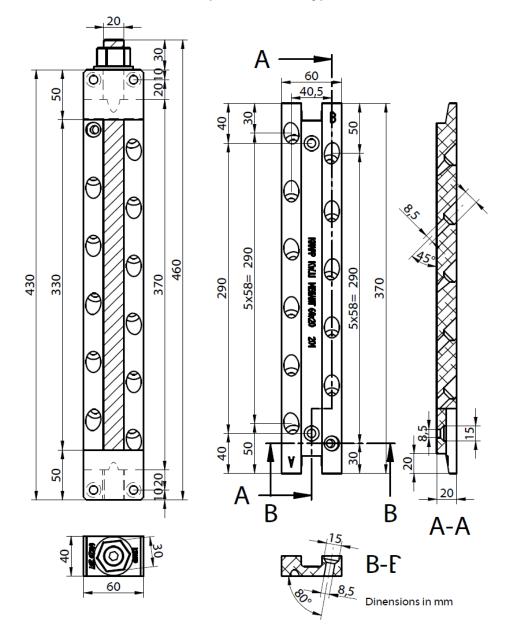

Hexagonal nut	Diameter d	Width across flat s	Thickness m
-	mm	mm	mm
M8	8	13	6.5
M10	10	17	8
M16	16	24	13
M20	20	30	16


Washer	Inner diameter d₁	Inner diameter d ₁ Outer diameter d ₂	
-	mm	mm	mm
M8	8.4	16	1.6
M10	10.5	20	2
M16	17	30	3
M20	21	37	3

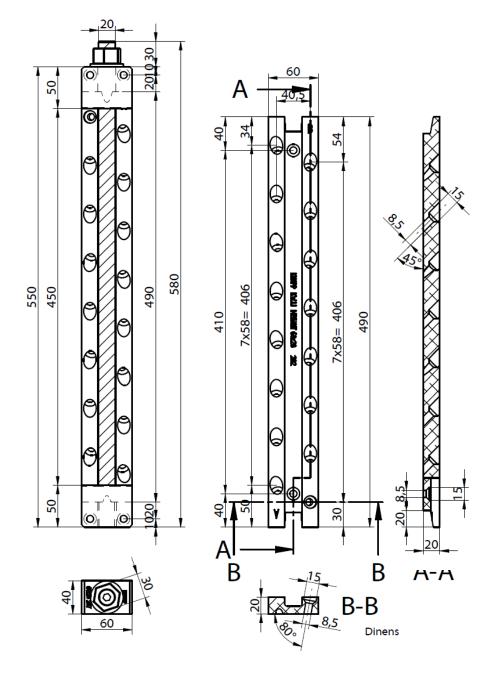
ANNEX 1: MEGANT® / Fastener specification / threaded rod M16 and M20


dimensions in mm

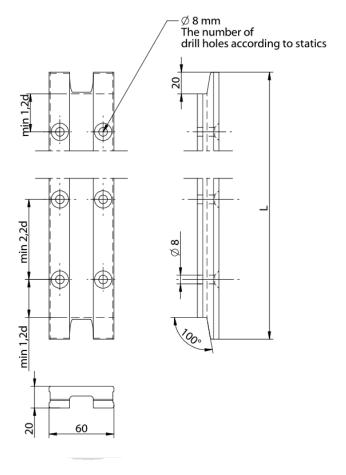
ANNEX 2: MEGANT® / Product details definition / assembling of the connectors


Position number	Name		
1	Connector plate		
2	Clamping jaw top		
3	Clamping jaw bottom		
4	Threaded rod		
5	Washer		
6	Hexagonal nut		
7	Inclined screws		
8	Horizontal (position) screws		
9	Clamping jaw screws		

ANNEX 2: MEGANT® 60 / Connector plate for wood, type 310x60x40

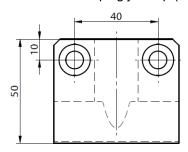

MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw	Number and dimension of threaded rod
mm	n 90,J/H n 45,J/H		n 90,J/H	mm
310x60x40	3	7	2	1x M20x340

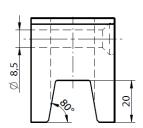
ANNEX 2: MEGANT® 60/ Connector plate for wood, type 430x60x40

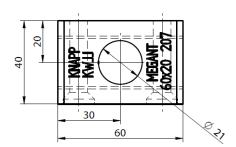

MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw	Number and dimension of threaded rod
mm	N90,J/H N45,J/H		n 90,J/H	mm
430x60x40	3	11	2	1x M20x460

ANNEX 2: MEGANT® 60/ Connector plate for wood, type 550x60x40

MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw	Number and dimension of threaded rod
mm	n _{90,J/H} n _{45,J/H}		n 90,J/H	mm
550x60x40	3	15	2	1x M20x580

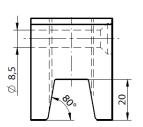

ANNEX 2: MEGANT® 60/ Connector plate for steel, type all

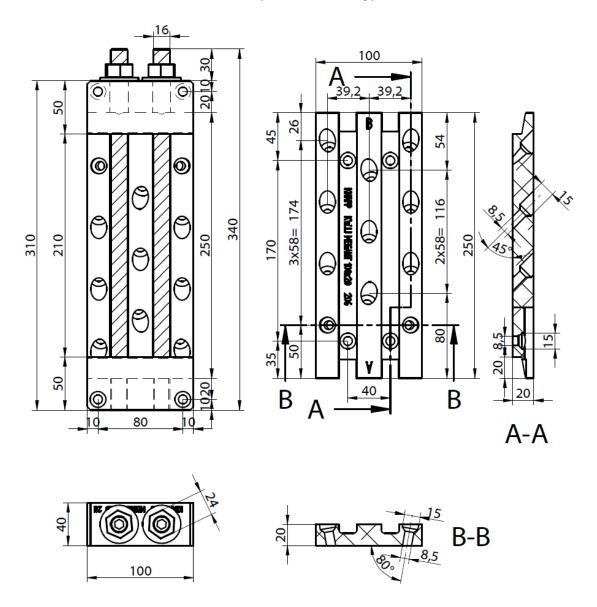


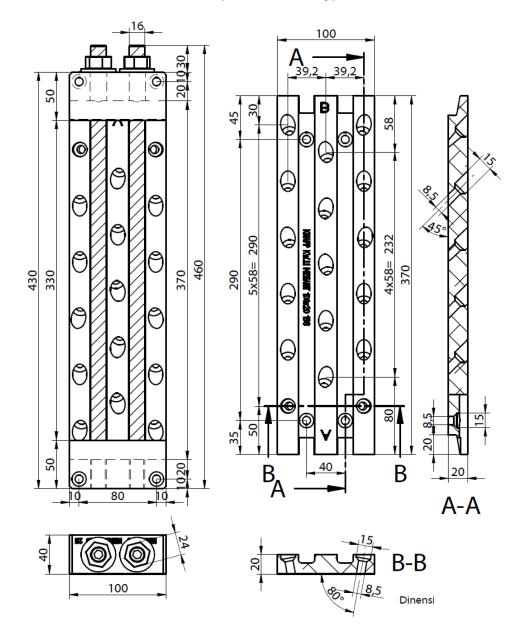

L according to the length of the connector to be mounted on the joist Min. 2 x 3 and max. 2 x 6 countersunk holes with \emptyset 8 mm

ANNEX 2: MEGANT® 60/ Clamping jaws, type all

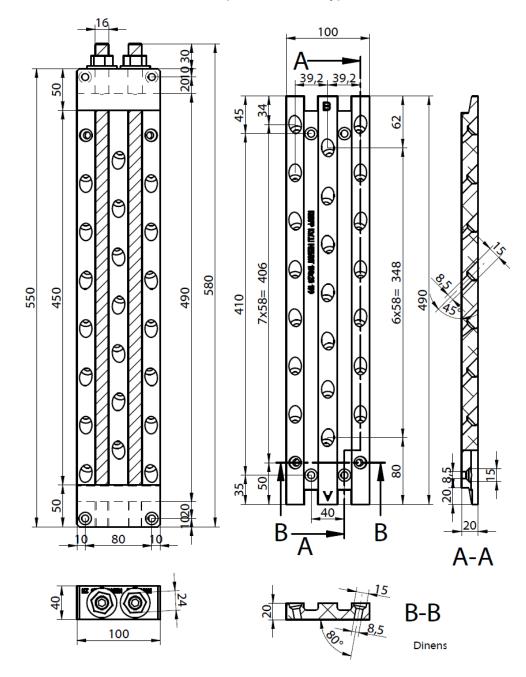
Clamping jaw top (dimensions in mm)




Clamping jaw bottom (dimensions in mm)

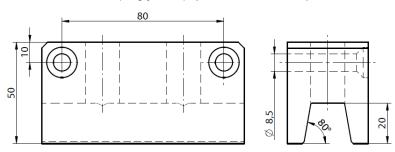


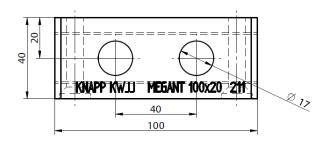
ANNEX 2: MEGANT® 100/ Connector plate for wood, type 310x100x40


MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw	Number and dimension of threaded rod
mm	n _{90,J/H} n _{45,J/H}		N _{90,J/H}	mm
310x100x40	6	9	2	2x M16x340

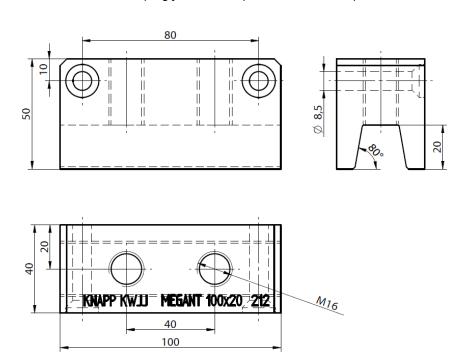
ANNEX 2: MEGANT® 100/ Connector plate for wood, type 430x100x40

MEGANT® Dimension L/B/H	Number of connector pla head	te (joist and	Number of screws in clamping jaw	Number and dimension of threaded rod
mm	n 90,J/H	n 45,J/H	n 90,J/H	mm
430x100x40	6	15	2	2x M16x460

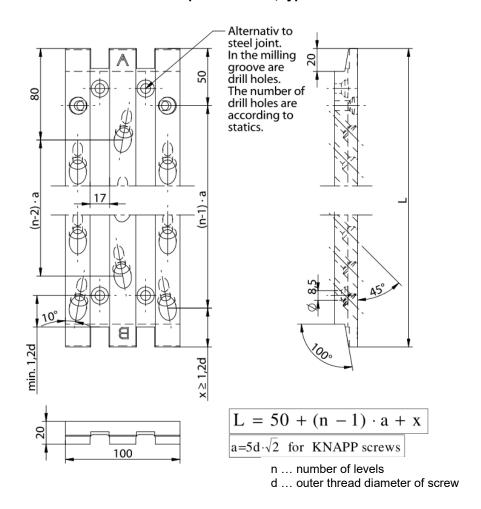

ANNEX 2: MEGANT® 100/ Connector plate for wood, type 550x100x40



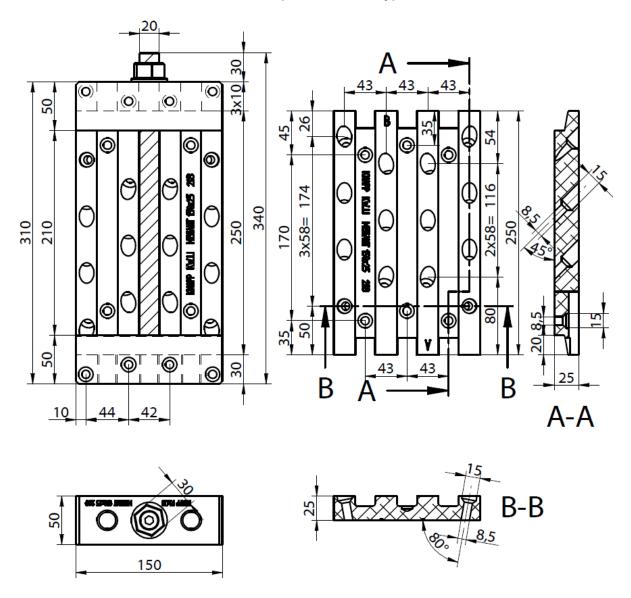
MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw	Number and dimension of threaded rod
mm	n 90,J/H n 45,J/H		n 90,J/H	mm
550x100x40	6	21	2	2x M16x580


ANNEX 2: MEGANT® 100/ Clamping jaws, type all

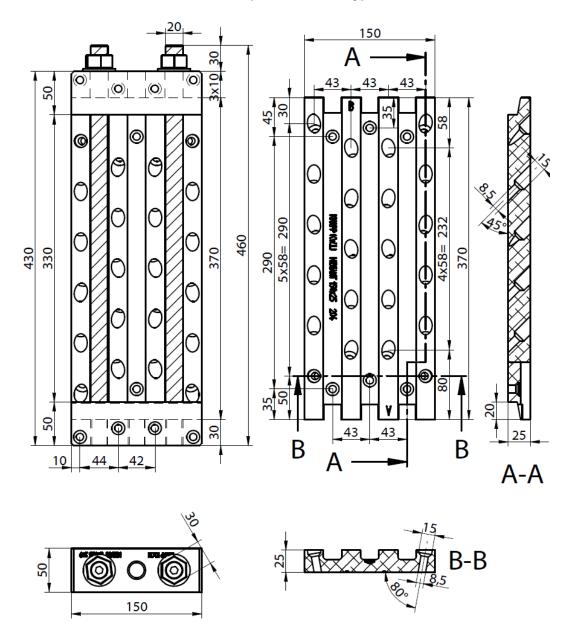
Clamping jaw top (dimensions in mm)



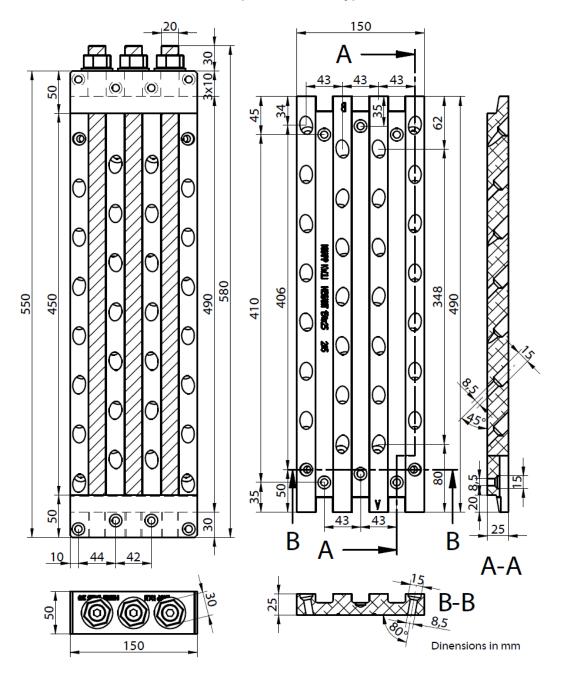
Clamping jaw bottom (dimensions in mm)



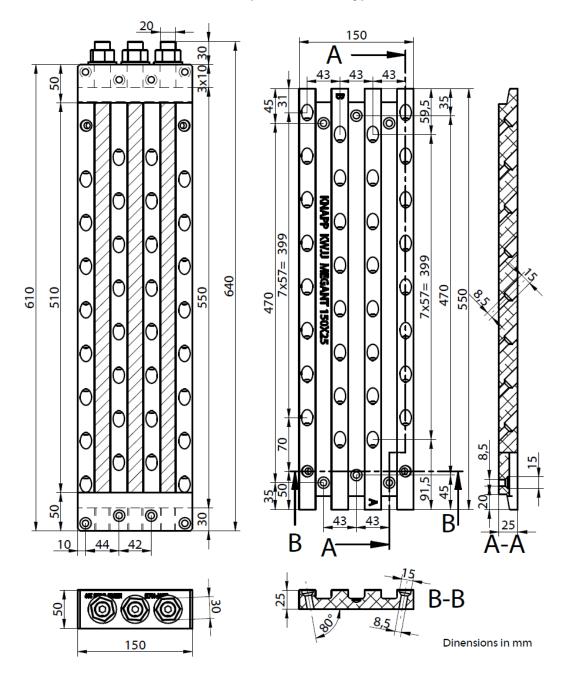
ANNEX 2: MEGANT® 100/ Connector plate for steel, type all


The connector plate for use in steel connections is provided with min. 2 x 4 and max. 2 x 8 countersunk holes with \emptyset 8 mm instead of the holes for the n_{90} screws in the area of the threaded rods. (Dimensions in mm)

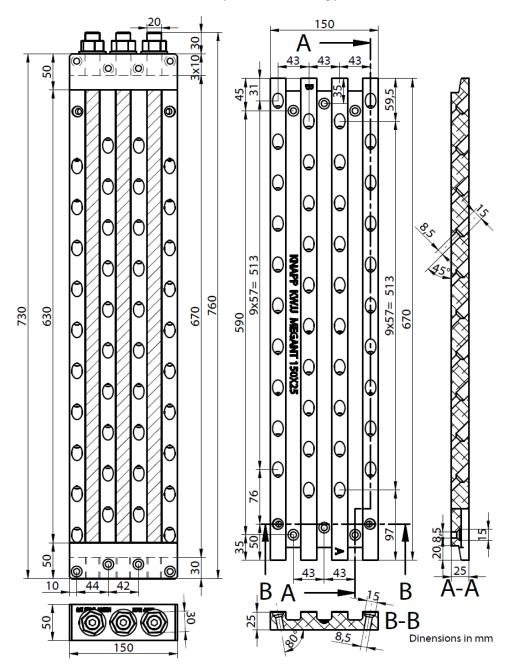
ANNEX 2: MEGANT® 150 / Connector plate for wood, type 310x150x50


MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
mm	n 90,J/H	n 45,J/H	n 90,J/H	n 45,J/H	mm
310x150x50	8	12	4	_	1-2 x M20x340

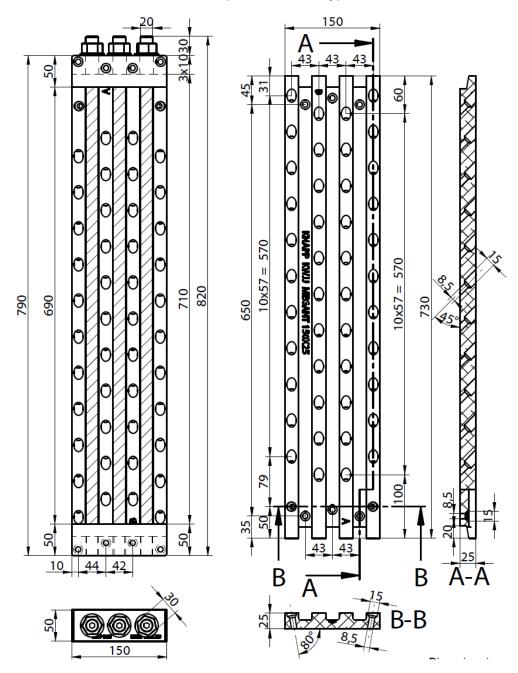
ANNEX 2: MEGANT® 150 / Connector plate for wood, type 430x150x50


MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
mm	n 90,J/H	n 45,J/H	N90,J/H	n 45,J/H	mm
430x150x50	8	20	4	_	2-3 x M20x460

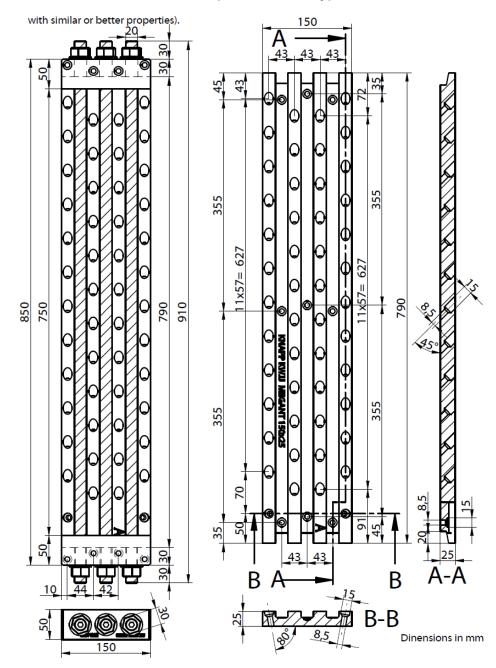
ANNEX 2: MEGANT® 150 / Connector plate for wood, type 550x150x50


MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
mm	n 90,J/H	n 45,J/H	N90,J/H	n 45,J/H	mm
550x150x50	8	28	4	_	3x M20x580

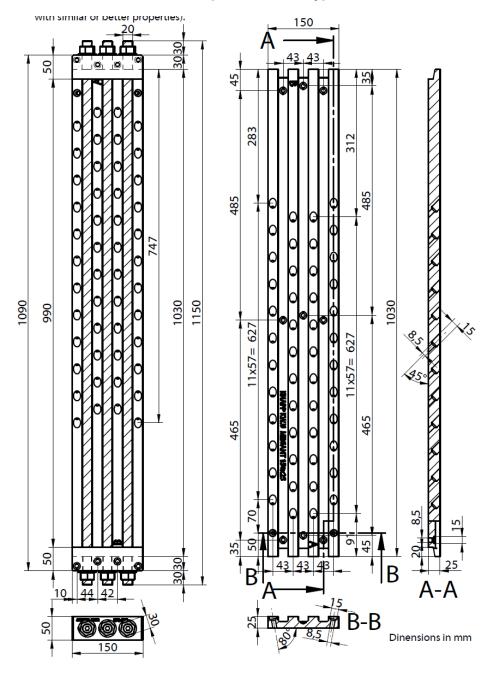
ANNEX 2: MEGANT® 150 / Connector plate for wood, type 610x150x50


	MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
I	mm	n 90,J/H	n 45,J/H	N90,J/H	n 45,J/H	mm
	610x150x50	8	32	4	_	3x M20x640

ANNEX 2: MEGANT® 150 / Connector plate for wood, type 730x150x50


MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
mm	n 90,J/H	n 45,J/H	N90,J/H	n 45,J/H	mm
730x150x50	8	40	4	_	3x M20x760

ANNEX 2: MEGANT® 150 / Connector plate for wood, type 790x150x50

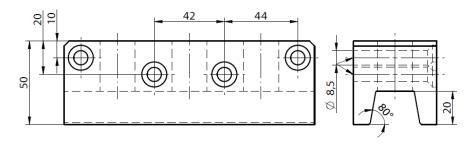

MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
mm	n 90,J/H	n 45,J/H	N90,J/H	n 45,J/H	mm
790x150x50	8	44	4	_	3x M20x820

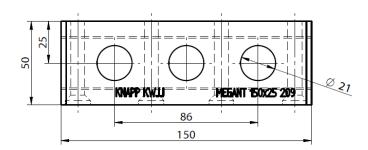
ANNEX 2: MEGANT® 150 / Connector plate for wood, type 850x150x50


MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
mm	N90,J/H	n 45,J/H	N90,J/H	n 45,J/H	mm
850x150x50	11	48	4	_	3x M20x910

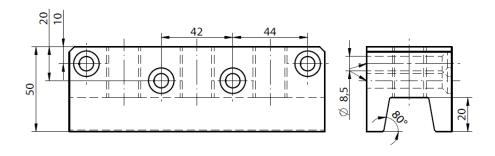
ANNEX 2: MEGANT® 150 / Connector plate for wood, type 1090x150x50

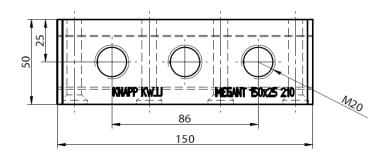
MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
mm	n 90,J/H	n 45,J/H	N90,J/H	n 45,J/H	mm
1090x150x50	11	48	4	_	3x M20x1150


ANNEX 2: MEGANT® 150 / Connector plate for wood, type 1030x150x50 SL



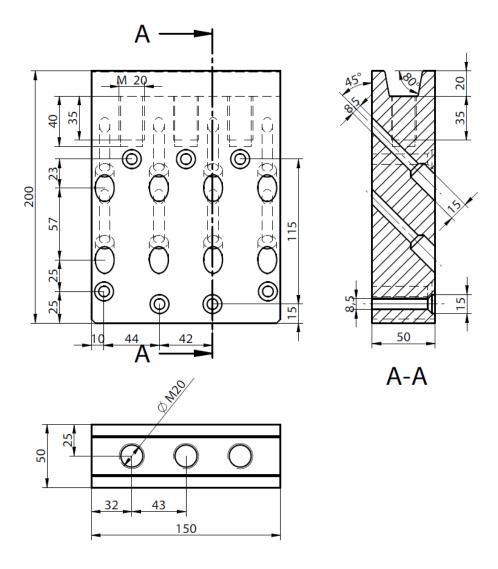
MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw		Number and dimension of threaded rod
mm	n 90,J/H	n 45,J/H	n 90,J/H	n 45,J/H	mm
1030x150x50 SL	8	40	4 top 7 bottom	8	3x M20x920


ANNEX 2: MEGANT® 150 / Clamping jaws, type 310x150x50 to 1090x150x50

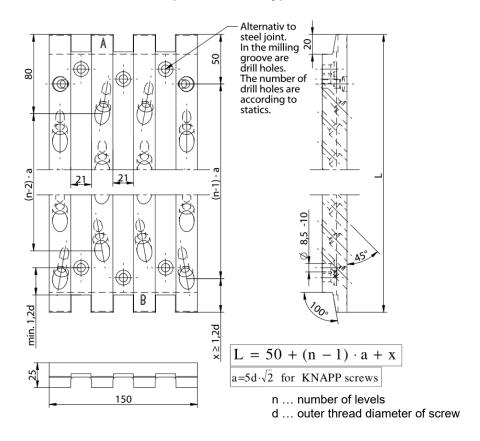

Clamping jaw top (dimensions in mm)



Clamping jaw bottom (dimensions in mm)



ANNEX 2: MEGANT® 150 / Clamping jaws, type 1030x150x50 SL



ANNEX 2: MEGANT® 150 / Clamping jaws, type 1030x150x50 SL

Clamping jaw for MEGANT® 1030x150x50 SL bottom (dimensions in mm)

ANNEX 2: MEGANT® 150 / Connector plate for steel, type all

The connector plate for use in steel connections is provided with min. 3×2 and max. 3×6 countersunk holes with \emptyset 10 mm instead of the holes for the n_{90} screws in the area of the threaded rods.(dimensions in mm)

ANNEX 3: MEGANT® / Installation of connectors / assembly from top

Header 1: Positioning screws

Header 2: 45° screws

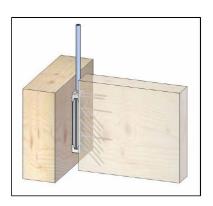
Header 3: bottom clamoping jaw

Header 4: finished

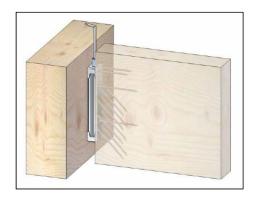
Joist 1: positioning screws

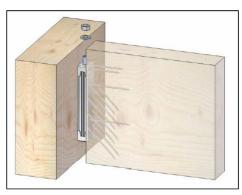


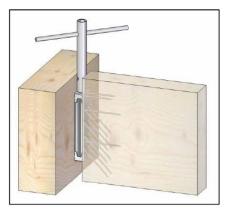
Joist 2: 45° screws

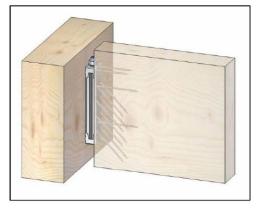


Joist 3: finished with top clamping jaw


ANNEX 3: MEGANT® / Installation of connectors / assembly from top


Header with joist 1: hang in joist


Header with joist 2: threaded rod


Header with joist 3: screw in threaded rod

Header with joist 4: washer and hex nut

Header with joist 5: tighten hex nut

Header with joist 6: connection finished

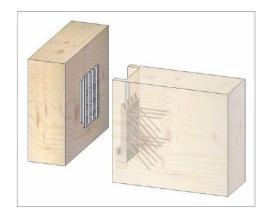
ANNEX 3: MEGANT® / Installation of connectors / assembly from bottom

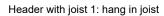
Header 2: 45° screws

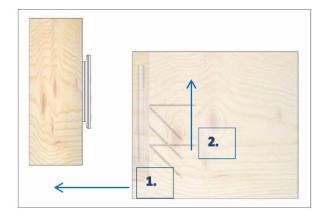
Header 3: finished

Joist 1: bottom clamping jaw in milling groove

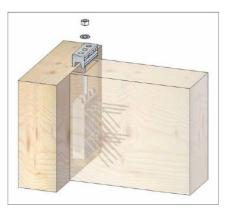
Joist 2: positioning screws

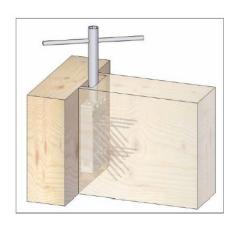


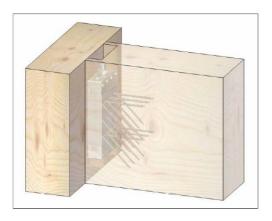

Joist 3: 45° screws



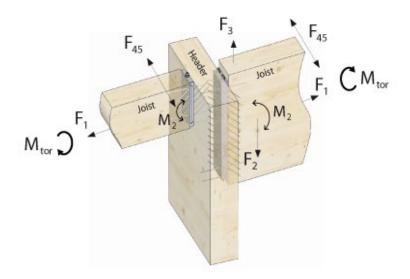
Joist 4: screw in threaded


ANNEX 3: MEGANT® / Installation of connectors / assembly from bottom




Header with joist 2: hang in joist from below

Header with joist 3: top clamping jaw, washer and hex nut



Header with joist 4: tighten hex nut

Header with joist 5: connection finished

ANNEX 4: MEGANT® / Definition of forces and their directions

Wooden structural components

Solid timber of softwood/hardwood of strength class C24/D24 or better according to EN 338 and EN 14081 1.

Glued laminated timber of strength class GL24c or better according to EN 14080

Glued laminated timber of hardwood according to UK Technical Assessments or national standards and regulations in force at the place of use,

Laminated veneer lumber LVL according to EN 14374 or according to UK Technical Assessments,

Solid wood members similar to glued laminated timber (typically e.g. Duo- and Triobalken) according to EN 14080 or national standards and regulations in force at the place of use,

Cross laminated timber according to UK Technical Assessments or national standards and regulations in force at the place of use,

Strand lumber (e.g. Laminated Strand Lumber – Intrallam, Parallam) according to UK Technical Assessments or national standards and regulations in force at the place of use.

The main beam (header) may also be of steel or concrete.

Forces and their directions

- F₁ Force acting in direction of the secondary beam. Connection of main beam or column and secondary beam.
- F₂ Force acting in direction of insertion. Connection of main beam or column and secondary beam. The member shall be prevented from rotation or eccentric loading, Annex 5, has to be considered.
- F₃ Force acting against direction of insertion. Connection of main beam or column and secondary beam. The member shall be prevented from rotation or eccentric loading, Annex 5, has to be considered.
- F₄₅ Force acting perpendicular to direction of insertion. Connection of main beam or column and secondary beam. The member shall be prevented from rotation or eccentric loading, Annex 5, has to be considered.
- M_{tor} Rotation moment. Connection of main beam or column and secondary beam.
- M₂ Moment caused by an eccentric force F₂ or F₃

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

	MEGANT series 60 – Material: EN AW - 6082											
Dimensions	Softwood	Cha	racteristic load bearing capacity and stiffness in softwood with screws 8 x 160 mm and horizontal screws 8 x 240 mm in joist									
L/B/H	material	F _{1,KCC,Rk}	F _{1,Rk}	F _{2,KCC,Rk}	F _{2,Rk}	F _{3,Rk}	F ₄ KCC,Rk	F _{4,Rk}	M _{tor,Rk}	K _{tor,ser}		
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad		
210,60,40	C24		18.9		89.7	27.6	26.0	32.0	2.5	200		
310x60x40	GL24h		20.4		96.8	29.1	36.9	33.6	2.7	227		
430x60x40	C24	36.6	18.9	150.4 ¹⁾	141	36.8	40.6	50.4	5.5	639		
430000000	GL24h	30.0	20.4	130.1 · f _{R2} ²⁾	152	38.7	40.0	52.8	5.8	723		
550x60x40	C24		18.9		192	45.9	44.3	68.7	9.6	1 569		
330x60x40	GL24h		20.4		207	48.3		72.0	10.2	1 775		

F_{1,KCC,RK} / F_{1,Rk} Characteristic load bearing capacity (aluminium failure/wood failure) in

direction of secondary beam

F_{2,KCC,RK} / F_{2,Rk} Characteristic load bearing capacity (aluminium failure/wood failure) in

direction of insertion

F_{3,Rk} Characteristic load bearing capacity (wood failure) against direction of

insertion

F_{4,KCC,RK} / F_{4,Rk} Characteristic load bearing capacity (aluminium failure/wood failure)

perpendicular to direction of insertion

M_{tor} Characteristic rotation moment

		MEC	SANT s	eries 100 – N	laterial:	EN AW	/ - 6082					
Dimensions	Softwood	Characteristic load bearing capacity and stiffness in softwood with screws 8 x 160 mm and horizontal screws 8 x 240 mm in joist										
L/B/H	material	F _{1,KCC,Rk}	F _{1,Rk}	F _{2,KCC,Rk}	F _{2,Rk}	F _{3,Rk}	F ₄ KCC,Rk	F _{4,Rk}	$M_{\text{tor,Rk}}$	K _{tor,ser}		
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad		
310x100x40	C24		29.4		115	43.8	62.4	41.2	4.2	346		
31001000040	GL24h		31.7		124	46.2	02.4	43.2	4.4	391		
430x100x40	C24	55.3	29.4	224.2 ¹⁾	192	57.5	68.6	68.7	8.6	1 066		
4303 100340	GL24h	55.5	31.7	206.6 · f _{R2} ²⁾	207	60.6	00.0	72.0	9.2	1 206		
550x100x40	C24		29.4		269	71.2	74.9	96.1	14.9	2 443		
330X 100X40	GL24h		31.7		290	75.0		100.8	15.9	2 764		

 $^{^{1)}}$ $F_{2,KCC,Rk}$ for torsional fixed header

²⁾ F_{2,KCC,Rk}·f_{R2} for not torsional fixed header and f_{R2} according to page 44

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

		MEG	ANT se	ries 150 –	Material:	EN AW	- 6082			
Dimensions	Softwood	Cha								crews
L/B/H	material	F _{1,KCC,Rk}		M _{tor,Rk}	K _{tor,ser}					
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad
310x150x50	C24		39.8		145	58.4	69.0	54.9	3.9	304
31001500050	GL24h		43.0		156	61.6	00.0	57.6	4.2	344
430x150x50	C24		39.8		241	76.7	74.0	91.6	12.5	1 594
4300 130000	GL24h		43.0		260	80.8	74.0	96.0	13.3	1 803
550x150x50	C24		39.8		337	95.0		128.2	20.9	3 488
55000150000	GL24h		43.0		364	100.0		134.4	22.3	3 946
610x150x50	C24		39.8	275 O 1)	385	95.0		128.2		3 488
010x130x30	GL24h		43.0	373.0 7	416	100.0		134.4	22.3	3 946
730x150x50	C24	74.2	39.8		482	95.0		128.2	20.9	3 488
730X130X30	GL24h	74.3	43.0	_,	520	100.0		134.4	22.3	3 946
790x150x50	C24		39.8		530	95.0	016	128.2	20.9	3 488
790x150x50	GL24h		43.0		572	100.0	01.0	134.4	22.3	3 946
950v450v50	C24		39.8		578	95.0		128.2	20.9	3 488
850x150x50	GL24h		43.0		624	100.0		134.4	22.3	3 946
1000v150v50	C24		39.8		578	95.0		128.2	20.9	3 488
1090x150x50	GL24h		43.0		624	100.0		134.4	22.3	3 946
1030x150x50	C24		39.8	650	559	95.0		128.2	20.9	3 488
SL	GL24h		43.0	000	604	100.0		134.4	22.3	3 946

For deviating densities $K_{tor,ser}$ and $M_{tor,Rk}$ for GL24h are adapted by the factor k_{dens}

$$k_{dens} = \left(\frac{\rho_k}{385}\right)^c$$

Where

 k_{dens} Factor to consider deviating densities

 $\rho_k.....$ Characteristic density of timber in kg/m³

c = 0.8..from higher to lower density and

c = 0.6..from lower to higher density

	Reduction factor	f _{R2} for not fixed hea	ader
MEGANT	Header width B _H	Eccentricity e $^{3)}$ e = B _H /2 + H _{Megant} /2	Reduction factor f _{R2}
series 60	$B_H \leq 140$ $140 \leq B_H \leq 320$	e ≤ 90 90 ≤ e ≤ 180	$f_{R2} = 1.0$ $f_{R2} = (270-e)/180$
series 100	$B_H \leq 140$ $140 \leq B_H \leq 360$	$\begin{array}{c} e \leq 90 \\ 90 \leq e \leq 200 \end{array}$	$f_{R2} = 1.0$ $f_{R2} = (310-e)/220$
series 150	$B_H \leq 200$ $200 \leq B_H \leq 450$	e ≤ 125 125 ≤ e ≤ 250	$f_{R2} = 1.0$ $f_{R2} = (375-e)/250$

³⁾ For greater eccentricities, additional reinforcement is necessary.

	MEGANT series 60, 100, and 150 – Material: EN AW - 6082									
Megant series:	Softwood	Slip modulus in softwood with screws 8 x 160 mm and horizontal screws 8 x 240 mm in joist								
differsion L	material	K _{1,ser}	K _{2,ser} ³⁾	K _{2,ser} ⁴⁾	K _{4,ser}					
mm	•	kN/mm	kN/mm	kN/mm	kN/mm					
series 60:	C24	6.7	36.9	30.3	6.1					
310, 430, 550	GL24h	7.2	39.8	32.7	6.6					
series 100:	C24	12.2	53.0	45.0	8.3					
310, 430, 550	GL24h	13.2	57.2	48.6	9.0					
series 150:	C24	19.5	81.7	67.5	12.1					
310, 430, 550-1090	GL24h	21.0	88.2	72.8	13.1					

For deviating densities K_{ser} for GL24h is adapted by the factor k_{dens}

$$k_{dens} = \left(\frac{\rho_k}{385}\right)^c$$

Where

 $k_{\it dens}$ Factor to consider deviating densities

 ρ_kCharacteristic density of timber in kg/m³

c = 0.8..from higher to lower density and

c = 0.6..from lower to higher density

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

	MEGANT s	eries 60 –	Material: I	EN AW - 60)82					
Dimensions L/B/H	Bottom clamping jaw in joist		Torsion modulus and stiffness in softwood with horizontal screws 8 x 160 mm in header and horizontal screws 8 x 240 mm in joist							
			$M_{2,\phi,Rk}$			$K_{2,\phi,ser}$ 1)				
mm			kNm			kNm/rad				
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h			
310x60x40	Top tension	1.7	1.8	2.0	530	555	582			
310000040	Bottom tension	2.5	2.7	2.8	366	404	466			
430x60x40	Top tension	2.4	2.6	2.8	1 081	1 202	1 350			
430000000	Bottom tension	4.2	4.5	4.8	1 037	1 048	1 064			
550x60x40	Top tension	3.2	3.4	3.7	1 981	2 106	2 237			
5500000040	Bottom tension	5.9	6.3	6.8	2 303	2 350	2 390			
Dimensions L/B/H	Bottom clamping jaw in header	Torsion modulus and stiffness in softwood with horizontal screws 8 x 160 mm in header and horizontal screws 8 x 240 mm in joist								
			$M_{2,\phi,Rk}$			K _{2,φ,ser} ¹⁾				
mm			kNm			kNm/rad				
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h			
310x60x40	Top tension	3.1	3.1	3.1	557	572	587			
3100000040	Bottom tension	3.1	3.3	3.6	744	771	798			
430x60x40	Top tension	6.6	6.7	6.8	1 455	1 559	1 649			
430000000	Bottom tension	4.6	4.9	5.3	1 511	1 722	1 967			
550x60x40	Top tension	8.7	9.4	10.2	2 495	2 699	2 970			
J30X00X40	Bottom tension	6.1	6.6	7.1	2 739	2 929	3 127			

 $^{^{1)}\,}K_{2,\phi}$ for the calculation of member forces and moments in a structural system shall be calculated as:

$$K_{2,\varphi} = \frac{{}_{2\cdot K_{2,\varphi,ser}}}{{}_{3\cdot \left(1+2\cdot \psi_2\cdot k_{def}\right)}}$$

Where

 ψ_2combination factor according to EN 1990 for the quasi-permanent value of the action causing the largest stress in relation to the strength

 k_{def} deformation factor according to EN 1995-1-1

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

	MEGANT se	ries 100 -	- Material:	EN AW - 6	082				
Dimensions L/B/H	Bottom clamping jaw in joist	Torsion modulus and stiffness in softwood with horizontal screws 8 x 160 mm in header and horizontal screws 8 x 240 mm in joist							
			$M_{2,\phi,Rk}$			$K_{2,\phi,ser}$ 1)			
mm			kNm			kNm/rad			
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h		
210v100v40	Top tension	3.0	3.2	3.5	666	702	740		
310x100x40	Bottom tension	4.3	4.3	4.3	834	844	855		
420×400×40	Top tension	4.2	4.5	4.9	1 576	1 663	1 755		
430x100x40	Bottom tension	7.9	8.3	8.8	1 577	1 693	1 883		
550 400 40	Top tension	5.5	5.9	6.4	2 950	3 128	3 321		
550x100x40	Bottom tension	11.4	12.1	12.9	3 364	3 128 3 420 rood with h	3 497		
Dimensions L/B/H	Bottom clamping jaw in header			odulus and stiffness in softwood with horizontal 8 x 160 mm in header and horizontal screws 8 x 240 mm in joist					
			$M_{2,\phi,\text{Rk}}$			$K_{2,\phi,ser}$ 1)			
mm			kNm			kNm/rad			
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h		
310x100x40	Top tension	4.6	4.6	4.6	867	882	897		
3 10X 100X40	Bottom tension	5.4	5.9	6.1	817	855	898		
420×400×40	Top tension	8.4	9.1	9.9	2 187	2 271	2 352		
430x100x40	Bottom tension	8.2	8.9	9.6	1 988	2 085	2 197		
550v100v40	Top tension	11.1	12.0	13.0	4 251	4 550	4 823		
550x100x40	Bottom tension	11.0	11.9	12.9	3 868	4 014	4 196		

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

	MEGANT se	ries 150 -	- Material:	EN AW - 6	082					
Dimensions L/B/H	Bottom clamping jaw in joist	Torsion modulus and stiffness in softwood with horizontal screws 8 x 160 mm in header and horizontal screws 8 x 240 mm in joist								
			$M_{2,\phi,Rk}$			$K_{2,\phi,ser}^{\ 1)}$				
			kNm			kNm/rad				
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h			
310x150x50	Top tension	4.9	5.3	5.7	1 054	1 132	1 230			
310X130X30	Bottom tension	5.9	6.0	6.0	966	1 022	1 073			
430x150x50	Top tension	7.0	7.6	8.3	2 495	2 629	2 770			
430x130x30	Bottom tension	11.3	11.9	12.4	2 330	2 460	2 645			
550x150x50	Top tension	9.3	10.0	10.9	4 685	4 965	5 269			
	Bottom tension	16.7	17.7	18.7	4 966	5 051	5 169			
610x150x50	Top tension	10.4	11.2	12.2	6 057	6 425	6 834			
010x150x50	Bottom tension	19.3	20.5	21.8	6 884	6 991	7 107			
730x150x50	Top tension	12.7	13.7	14.8	9 431	9 964	10 589			
730x130x30	Bottom tension	24.6	26.2	28.0	11 878	12 147	12 387			
790x150x50	Top tension	13.8	14.9	16.2	11 444	12 097	12 819			
790x150x50	Bottom tension	27.3	29.1	31.1	14 494	14 908	15 288			
850x150x50	Top tension	19.1	20.7	22.4	15 717	16 571	17 523			
65000150000	Bottom tension	32.0	33.8	35.7	17 464	18 009	18 597			
1030x150x50	Top tension	17.1	18.5	20.1	14 193	14 785	15 477			
SL	Bottom tension	31.2	33.4	35.7	21 169	21 831	22 444			
1090x150x50	Top tension	24.6	26.6	28.8	23 322	24 659	26 170			
1090x 100x30	Bottom tension	44.5	47.2	49.3	34 694	35 943	37 231			

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

	MEGANT se	ries 150 -	- Material:	EN AW - 6	082					
Dimensions L/B/H	Bottom clamping jaw in header	Torsion modulus and stiffness in softwood with horizontal screws 8 x 160 mm in header and horizontal screws 8 x 240 mm in joist								
			$M_{2,\phi,Rk}$			K _{2,φ,ser} 1)				
mm			kNm			kNm/rad				
mm	•	C24	GL24h	GL28h	C24	GL24h	GL28h			
310x150x50	Top tension	6.2	6.3	6.3	1 090	1 117	1 158			
310x130x30	Bottom tension	7.2	7.8	8.5	1 222	1 304	1 418			
430x150x50	Top tension	13.5	13.7	13.8	3 112	3 259	3 391			
4300 13000	Bottom tension	10.9	11.8	12.8	2 906	3 066	3 237			
550x150x50	Top tension	19.2	20.8	22.5	5 777	6 284	6 793			
	Bottom tension	14.6	15.8	17.1	5 507	5 790	6 128			
610x150x50	Top tension	21.6	23.4	25.3	7 255	7 882	8 634			
610x150x50	Bottom tension	16.5	17.8	19.3	7 235	7 556	7 956			
730x150x50	Top tension	26.5	28.6	31.0	11 292	11 863	12 681			
730x130x30	Bottom tension	20.2	21.8	23.7	11 482	12 004	12 590			
700v150v50	Top tension	28.9	31.2	33.8	14 009	14 544	15 294			
790x150x50	Bottom tension	22.1	23.9	25.8	14 049	14 678	15 389			
950v150v50	Top tension	35.0	37.9	41.0	17 865	18 395	19 099			
850x150x50	Bottom tension	28.1	30.4	32.9	18 195	18 945	19 802			
1030x150x50	Top tension	17.1	18.5	20.0	14 168	14 760	15 452			
SL	Bottom tension	26.2	28.4	30.7	23 710	24 690	25 760			
1090x150x50	Top tension	45.7	49.4	53.5	34 776	36 091	37 536			
1090x 150x50	Bottom tension	37.0	40.0	43.3	34 452	35 830	37 306			

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

	MEGANT series 60 – Material: EN AW - 6082										
Dimensions	Hardwood	Characteristic load bearing capacity and stiffness in hardwood with screws 8 x 120 mm									
L/B/H	material	F _{1,KCC,Rk}	F _{1,Rk}	F _{2,KCC,Rk}	F _{2,Rk}	F _{3,Rk}	F ₄ KCC,Rk	F _{4,Rk}	M _{tor,Rk}	K _{tor,ser}	
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad	
210,60,40	$\rho_{k} = 530 \text{ kg/m}^{3}$		40.1		123	46.8	26.0	49.2	3.5	374	
310x60x40	$\rho_{k} = 590 \text{ kg/m}^{3}$		47.6	150.4 ¹⁾	146	50.5	36.9	54.3	3.9	439	
430x60x40	$\rho_{k} = 530 \text{ kg/m}^{3}$	36.6	40.1	150.4 7	193	61.5	40.6	77.3	7.5	1 241	
430000000	$\rho_{k} = 590 \text{ kg/m}^{3}$	30.0	47.6	130.1 · f _{R2}	229	66.0	40.0	85.4	8.5	1 457	
550x60x40	$\rho_{k} = 530 \text{ kg/m}^{3}$		40.1	- 2)	263	76.3	44.2	105.3	13.2	2 924	
330x60x40	$\rho_{k} = 590 \text{ kg/m}^{3}$		47.6		312	81.5	44.3	116.5	14.9	3 434	

F_{1,KCC,RK} / F_{1,Rk} Characteristic load bearing capacity (aluminium failure/wood failure) in

direction of secondary beam

F_{2,KCC,RK} / F_{2,Rk} Characteristic load bearing capacity (aluminium failure/wood failure) in

direction of insertion

F_{3,Rk} Characteristic load bearing capacity (wood failure) against direction of

insertion

F_{4,KCC,RK} / F_{4,Rk} Characteristic load bearing capacity (aluminium failure/wood failure)

perpendicular to direction of insertion

M_{tor} Characteristic rotation moment

	MEGANT series 100 – Material: EN AW - 6082										
Dimensions	Hardwood	Characteristic load bearing capacity and stiffness in hardwood with screws 8 x 120 mm									
L/B/H	material	F _{1,KCC,Rk}	F _{1,Rk}	F _{2,KCC,Rk}	F _{2,Rk}	F _{3,Rk}	F _{4KCC,Rk}	F _{4,Rk}	$M_{tor,Rk}$	K _{tor,ser}	
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad	
310x100x40	$\rho_{k} = 530 \text{ kg/m}^{3}$		62.5		158	75.3	62.4	63.2	5.7	644	
31001000040	$\rho_{k} = 590 \text{ kg/m}^{3}$		74.2	224.2 ¹⁾	187	81.5	02.4	69.9	6.4	757	
430x100x40	$\rho_{k} = 530 \text{ kg/m}^{3}$	<i>EE 2</i>	62.5	224.2 7	263	97.3	60.6	105.3	11.9	1 986	
430X100X40	$\rho_{k} = 590 \text{ kg/m}^{3}$	55.3	74.2	2)	312	104.8	68.6	116.5	13.3	2 333	
550x100x40	$\rho_{k} = 530 \text{ kg/m}^{3}$		62.5		368	119.4	74.9	147.5	20.5	4 553	
330X 100X40	$\rho_{k} = 590 \text{ kg/m}^{3}$		74.2		437	128.1		163.0	23.0	5 348	

¹⁾ F_{2,KCC,Rk} for torsional fixed header

²⁾ F_{2,KCC,Rk} · f_{R2} for not torsional fixed header and f_{R2} according to page 44

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

		MEGAN	Γ series	150 – Mate	erial: El	N AW - 6	6082				
Dimensions	Hardwood	Characteristic load bearing capacity and stiffness in hardwood with screws 8 x 120 mm									
L/B/H	material	F _{1,KCC,Rk}	F _{1,Rk}	F _{2,KCC,Rk}	F _{2,Rk}	F _{3,Rk}	F ₄ KCC,Rk	F _{4,Rk}	$M_{\text{tor,Rk}}$	K _{tor,ser}	
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/ra d	
240v450v50	$\rho_{k} = 530 \text{ kg/m}^{3}$		84.7		191	100.3	68.0	84.3	5.4	567	
310x150x50	$\rho_{k} = 590 \text{ kg/m}^{3}$		100.5		227	108.7	00.0	93.2	6.1	666	
430x150x50	$\rho_{k} = 530 \text{ kg/m}^{3}$		84.7		319	129.8	74.8	140.5	17.1	2 970	
4300130000	$\rho_{k} = 590 \text{ kg/m}^{3}$	 		378	139.8	74.0	155.3	19.2	3 489		
550x150x50	$\rho_{k} = 530 \text{ kg/m}^{3}$			446	159.2		196.7	28.7	6 500		
550X150X50	$\rho_{k} = 590 \text{ kg/m}^{3}$		100.5	=	530	170.8		217.4	32.3	7 634	
610x150x50	$\rho_{k} = 530 \text{ kg/m}^{3}$		84.7	375.0 ¹⁾	510	159.2		196.7	28.7	6 500	
610x150x50	$\rho_{k} = 590 \text{ kg/m}^{3}$		100.5	375.0 7	605	170.8		217.4	32.3	7 634	
730x150x50	$\rho_{k} = 530 \text{ kg/m}^{3}$	74.3	84.7	366.5 · f _{R2}	637	159.2		196.7	28.7	6 500	
7302130230	$\rho_{k} = 590 \text{ kg/m}^{3}$	74.5	100.5	,	757	170.8		217.4	32.3	7 634	
790x150x50	$\rho_{k} = 530 \text{ kg/m}^{3}$		84.7		701	159.2	81.6	196.7	28.7	6 500	
790x150x50	$\rho_{k} = 590 \text{ kg/m}^{3}$		100.5		832	170.8	01.0	217.4	32.3	7 634	
850x150x50	$\rho_{k} = 530 \text{ kg/m}^{3}$		84.7		765	159.2		196.7	28.7	6 500	
830x130x30	$\rho_{k} = 590 \text{ kg/m}^{3}$		100.5		908	170.8		217.4	32.3	7 634	
1090x150x50	$\rho_{k} = 530 \text{ kg/m}^{3}$		84.7		765	159.2		196.7	28.7	6 500	
1090x 150x50	$\rho_{k} = 590 \text{ kg/m}^{3}$		100.5		908	170.8		217.4	32.3	7 634	
1030x150x50	$\rho_{k} = 530 \text{ kg/m}^{3}$		84.7	650	727	159.2		196.7	28.7	6 500	
SL	$\rho_{k} = 590 \text{ kg/m}^{3}$		100.5	030	863	170.8		217.4	32.3	7 634	

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

MEGANT series 60, 100, and 150 – Material: EN AW - 6082								
Megant series:	Hardwood	Slip mo	Slip modulus in hardwood with screws 8 x 120 mm					
dimension L	material	K _{1,ser}	K _{2,ser} ³⁾	K _{2,ser} ⁴⁾	K _{4,ser}			
mm	-	kN/mm	kN/mm	kN/mm	kN/mm			
series 60:	$\rho_{k} = 530 \text{ kg/m}^{3}$	9.4	51.9	42.7	8.6			
310, 430, 550	$\rho_{k} = 590 \text{ kg/m}^{3}$	10.2	56.6	46.5	9.4			
series 100:	$\rho_{k} = 530 \text{ kg/m}^{3}$	17.2	74.6	63.4	11.7			
310, 430, 550	$\rho_{k} = 590 \text{ kg/m}^{3}$	18.8	81.3	69.1	12.8			
series 150:	$\rho_{k} = 530 \text{ kg/m}^{3}$	27.4	115.1	95.0	17.1			
310, 430, 550-1090	$\rho_{k} = 590 \text{ kg/m}^{3}$	29.9	125.4	103.5	18.6			

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

MEGANT series 60 – Material: EN AW - 6082								
Dimensions Bottom clamping		Torsion modulus and stiffness in hardwood with horizontal screws 8 x 120 mm						
L/D/П	jaw in joist		$M_{2,\phi,Rk}$			K _{2,φ,ser} ¹)	
			kNm			kNm/ra	d	
mm	-	D30	D50	BauBuche 2)	D30	D50	BauBuche 2)	
310x60x40	Top tension	3.5	4.2	2.8	920	1 089	798	
310000040	Bottom tension	3.8	4.5	3.9	684	801	610	
430x60x40	Top tension	5.1	6.1	3.9	2 102	2 489	1 754	
43000000	Bottom tension	6.1	7.2	6.2	2 087	2 454	1 883	
550x60x40	Top tension	6.8	8.1	5.1	3 818	4 519	3 164	
330000000	Bottom tension	8.4	9.9	8.6	4 302	5 073	3 929	
Dimensions	Bottom clamping	Torsion modulus and stiffness in hardwood with horizonta 8 x 120 mm						
L/B/H	jaw in header	M _{2,φ,Rk}			K _{2,φ,ser} ¹⁾			
			kNm		kNm/rad			
mm	-	D30	D50	BauBuche 2)	D30	D50	BauBuche 2)	
240,40,40	Top tension	6.1	7.2	5.8	941	1 117	904	
310x60x40	Bottom tension	6.3	7.5	4.9	1 160	1 371	1 086	
400-00-40	Top tension	11.1	13.1	9.5	2 220	2 614	2 023	
430x60x40	Bottom tension	9.5	11.4	7.3	2 657	3 141	2 340	
550v60v40	Top tension	16.0	18.9	12.5	4 726	5 549	4 070	
550x60x40	Bottom tension	12.8	15.2	9.7	5 060	5 960	4 295	

 $^{^{1)}\,}K_{2,\phi}$ for the ultimate limit state shall be calculated as:

$$K_{2,\varphi} = \frac{{}_{2\cdot K_{2,\varphi,ser}}}{{}_{3\cdot \left(1+2\cdot \psi_2\cdot k_{def}\right)}}$$

Where

 ψ_2combination factor according to EN 1990 for the quasi-permanent value of the action causing the largest stress in relation to the strength

 k_{def} deformation factor according to EN 1995-1-1

²⁾ for Träger BauBuche according to ETA-14/0354 in service class 1

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

MEGANT series 100 – Material: EN AW - 6082								
Dimensions L/B/H	Bottom clamping	Torsion modulus and stiffness in hardwood with horizontal screws 8 x 120 mm						
L/D/П	jaw in joist		$M_{2,\phi,R}$	•		$K_{2,\phi,ser}$)	
			kNm			kNm/ra	d	
mm	-	D30	D50	BauBuche 2)	D30	D50	BauBuche 2)	
210×100×10	Top tension	5.3	6.3	4.2	1 192	1 406	962	
310x100x40	Bottom tension	7.2	8.5	6.8	1 003	1 185	1 074	
430x100x40	Top tension	7.5	8.9	5.7	2 858	3 370	2 249	
43001000040	Bottom tension	11.9	14.1	11.7	3 107	3 644	2 457	
550x100x40	Top tension	9.8	11.7	7.4	5 429	6 409	4 208	
3300 1000 40	Bottom tension	16.7	19.8	16.6	6 847	8 052	5 502	
Dimensions	Bottom clamping	Torsion modulus and stiffness in hardwood with horizontal screws 8 x 120 mm						
L/B/H	jaw in header	$M_{2,\phi,Rk}$			K _{2,φ,ser} 1)			
			kNm			kNm/rad		
mm	-	D30	D50	BauBuche 2)	D30	D50	BauBuche 2)	
210×100×10	Top tension	9.1	10.7	7.5	1 449	1 709	1 211	
310x100x40	Bottom tension	9.8	11.5	8.0	1 502	1 765	1 213	
430x100x40	Top tension	15.9	18.9	12.2	3 534	4 198	3 291	
	Bottom tension	15.8	18.8	12.1	4 013	4 713	3 078	
550v100v40	Top tension	21.1	25.1	16.0	6 646	7 834	5 897	
550x100x40	Bottom tension	21.4	25.4	16.2	7 839	9 229	6 171	

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

MEGANT series 150 – Material: EN AW - 6082							
Dimensions L/B/H	Bottom clamping jaw in	Torsion modulus and stiffness in hardwood with horizontal screws 8 x 120 mm					
L/D/H	joist		$M_{2,\phi,Rl}$	<		$K_{2,\phi,ser}$ 1)
			kNm		kNm/rad		
mm	-	D30	D50	BauBuche 2)	D30	D50	BauBuche ²⁾
310x150x50	Top tension	10.1	12.0	8.0	1 943	2 291	1 537
3102130230	Bottom tension	10.2	12.1	8.8	1 502	1 768	1 370
430x150x50	Top tension	14.8	17.6	11.4	4 799	5 658	3 704
430x130x30	Bottom tension	17.4	20.6	16.5	4 614	5 411	3 426
550x150x50	Top tension	19.7	23.4	14.9	9 109	10 748	7 042
550X150X50	Bottom tension	24.6	29.2	23.9	10 071	11 842	7 507
610x150x50	Top tension	22.2	26.3	16.7	11 882	14 021	9 174
010x150x50	Bottom tension	28.2	33.4	27.6	13 650	16 070	10 380
730x150x50	Top tension	27.1	32.2	20.3	18 761	22 139	14 381
730x130x30	Bottom tension	35.3	41.9	35.1	22 474	26 505	17 722
790x150x50	Top tension	29.6	35.1	22.2	22 897	27 022	17 468
790x150x50	Bottom tension	38.9	46.1	38.8	27 022	31 894	21 573
950×150×50	Top tension	40.7	48.4	30.8	31 218	36 848	23 864
850x150x50	Bottom tension	48.5	57.4	46.2	33 215	39 126	25 995
1030x150x50 SL	Top tension	36.5	43.4	27.6	29 555	34 875	22 084
	Bottom tension	44.9	53.1	44.3	37 146	43 895	31 296
1090x150x50	Top tension	52.6	62.5	39.5	21 609	25 598	43 118
1090x 130x30	Bottom tension	65.7	77.8	63.8	63 939	75 447	51 329

ANNEX 5: MEGANT® / Characteristic load-bearing capacities

MEGANT series 150 – Material: EN AW - 6082							
Dimensions Bottom clamping jaw in		Torsion modulus and stiffness in hardwood with horizontal screws 8 x 120 mm					
L/B/H	header		$M_{2,\phi,Rk}$	(K _{2,φ,ser} 1)		
			kNm			kNm/ra	d
mm	-	D30	D50	BauBuche 2)	D30	D50	BauBuche 2)
310x150x50	Top tension	12.4	14.5	9.5	1 964	2 322	1 618
310x130x30	Bottom tension	14.6	17.4	11.5	2 177	2 561	1 728
430x150x50	Top tension	24.2	28.6	20.4	4 712	5 579	4 459
430x130x30	Bottom tension	22.4	26.6	17.2	5 493	6 468	4 226
FF0v1F0vF0	Top tension	35.5	42.3	27.0	9 526	11 200	8 002
550x150x50	Bottom tension	30.2	35.9	22.9	10 622	12 509	8 173
610x150x50	Top tension	40.1	47.7	30.4	13 027	15 306	10 216
010x150x50	Bottom tension	34.1	40.6	25.8	13 989	16 475	10 712
730x150x50	Top tension	49.3	58.6	37.2	22 153	26 052	16 475
730x130x30	Bottom tension	42.0	49.9	31.6	22 457	26 457	17 040
790x150x50	Top tension	53.9	64.1	40.5	27 733	32 639	20 592
790x150x50	Bottom tension	45.9	54.6	34.5	27 589	32 512	20 875
950×150×50	Top tension	66.1	78.6	50.2	33 981	40 006	26 215
850x150x50	Bottom tension	58.3	69.3	44.2	35 042	41 307	27 032
1030x150x50	Top tension	36.3	43.2	27.4	29 463	34 768	22 010
SL	Bottom tension	55.5	66.0	41.8	48 860	57 711	37 174
1090x150x50	Top tension	86.7	103.0	65.3	66 338	78 198	50 983
1090x150x50	Bottom tension	77.0	91.5	58.0	66 022	77 878	50 939

- 1. Calculation of characteristic load bearing capacities for connections between main beam or column and secondary beam
 - (a) $F_{1,Rk}$ force acting in the direction of the secondary beam:

$$F_{1,Rk} = min \begin{cases} F_{1,J,Rk} & \dots see \ (i) \\ F_{1,H,Rk} & \dots see \ (i) \\ F_{t,Rk} & \dots see \ (ii) \\ F_{1,KCC,Rk} & \dots see \ (iii) \end{cases}$$

(i) Load bearing capacity of tension screws in softwood and hardwood for Joist/Header $F_{1,J/H,Rk}$:

Characteristic withdrawal resistance in softwood:	$F_{1,J/H,Rk} = n_{ef,J/H} \cdot f_{ax,J/H,Rk} \cdot d \cdot l_{ef,J/H} \cdot k_{ax}$
Characteristic withdrawal resistance in hardwood ($\rho_k \le 590 \text{kg/m}^3$):	$F_{1,J/H,Rk} = n_{ef,J/H} \cdot 2 \cdot 10^{-3} \cdot l_{ef,J/H} \cdot d^{0.66} \cdot \rho_k^{1.6} \cdot k_{\alpha}$
Characteristic withdrawal resistance in Träger BauBuche according to ETA-14/0354:	$F_{1,J,Rk} = n_{ef,J} \cdot 11.7 \cdot d \cdot l_{ef,J} F_{1,H,Rk} = n_{ef,H} \cdot 23.3 \cdot d \cdot l_{ef,H}$
with	
Characteristic withdrawal strength perpendicular to direction of grain:	$f_{ax,45,J/H,Rk} = 0.52 \cdot d^{-0.5} \cdot l_{ef,J/H}^{-0.1} \cdot \rho_k^{0.8}$
Number of screws acting in direction of force:	EN AW -6082 : series 60: $n_{ef,J/H} = 3.00$ series 100: $n_{ef,J/H} = 4.67$ series 150: $n_{ef,J/H} = 6.33$
Effective length of threaded part in the timber member:	$\begin{aligned} l_{ef,J/H} &= l_{Scr,J/H} - 14 \ mm \\ 80 \ mm &\leq l_{scr} \leq 240 \ mm \end{aligned}$
Angle between screw axis and direction of grain:	$lpha=0^\circ$ for Joist (end grain) $lpha=90^\circ$ for Header (side grain)
Dimension coefficient	$k_{ax} = 0.3 + 0.7 \cdot \frac{\alpha}{45} \text{ for } 0^{\circ} \le \alpha \le 45^{\circ}$ $k_{ax} = 1.0 \text{ for for } 45^{\circ} \le \alpha \le 90^{\circ}$
Coefficient	$k_{lpha}=0.7$ for Joist $k_{lpha}=1.0$ for Header
For calculation of design values	k_{mod} according to EN 1995-1-1 and $\gamma_m=1.3$

(ii) Tensile strength of horizontal screws $F_{t,Rk}$:

Characteristic tensile resistance:	$F_{t,Rk} = n_{90} \cdot f_{tens}$
with	
Tensile strength of the screw:	$f_{tens} = 20 \ kN$ according to Annex 1
For calculation of design values	$\gamma_{m,2} = 1.25 \text{ (EN 1993-1-1)}$

(iii) Maximum load bearing capacity of connector MEGANT:

Maximum load bearing capacity:	$F_{1,KCC,Rk}$ according to Annex 5
For calculation of design values	$\gamma_{m,2} = 1.25 \text{ (EN 1999-1-1)}$

(b) $F_{2,Rk}$ – force acting in direction of insertion:

$$F_{2,Rk} = min \begin{cases} F_{2,J,Rk} & \dots see \ (i) \\ F_{2,H,Rk} & \dots see \ (i) \\ F_{2,KCC,Rk} & \dots see \ (ii) \\ F_{t,Rk} & \dots see \ (iii) \\ F_{\tau,Rk} & \dots see \ (iv) \end{cases}$$

i.

Load bearing capacity of 45° screws in softwood and hardwood for Joist/Header $F_{2,I/H,Rk}$:

Characteristic load bearing capacity of 45° screws:	$F_{2,J/H,Rk} = \frac{1.25 \cdot n_{45,J/H} \cdot F_{ax,45,J/H,Rk}}{\sqrt{2}} \text{ for } e_2 < e_{2,lim}$
with	
Characteristic withdrawal strength for a single screw in softwood:	$F_{ax,45,J/H,Rk} = 0.52 \cdot d^{0.5} \cdot l_{ef,J/H}^{0.9} \cdot \rho_k^{0.8}$
Characteristic withdrawal strength for a single screw in hardwood $(\rho_k \le 590 \text{kg/m}^3)$:	$F_{ax,45,J/H,Rk} = 2 \cdot 10^{-3} \cdot l_{ef,J/H} \cdot d^{0.66} \cdot \rho_k^{1.6}$
Characteristic withdrawal strength in Träger BauBuche according to ETA-14/0354:	$F_{ax,45,J/H,Rk} = 28 \cdot d \cdot l_{ef,J/H}$
Limit value for the eccentricity	$e_{2,lim} = \frac{0.8 \cdot \sum z^2}{n_{45,J/H}} \cdot z_{max}$
Number of 45° screws in Joist/Header:	$n_{45,J/H}$ according to Annex 2
Effective length of threaded part in the timber member:	$\begin{array}{l} l_{ef,J/H} = l_{Scr,J/H} - 10 \ mm \ \text{for Megant series } 60/100 \\ l_{ef,J/H} = l_{Scr,J/H} - 20 \ mm \ \text{for Megant series } 150 \\ l_{ef,J/H} = l_{Scr,J/H} - 50 \ mm \ \text{for the screws in the} \\ \text{clamping jaw of MEGANT } 1030\text{x}150\text{x}50 \ \text{SL} \\ 80 \ mm \leq l_{scr} \leq 240 \ mm \end{array}$
Sum of squares of the individual distances from the centre of rotation of the joint, see (1)(e), of the inclined screws in the joist or header connection	$\sum z^2$
Distance of the outermost inclined screw from the center of rotation of the joint	Z_{max}
For calculation of design values	k_{mod} according to EN 1995-1-1 and $\gamma_m=1.3$

(ii) Maximum load bearing capacity of connector MEGANT:

Maximum load bearing capacity:	$F_{2,KCC,Rk}$ according to Annex 5
For calculation of design values	$\gamma_{m,1} = 1.1 \text{ (EN 1999-1-1)}$

(iii) Tensile strength of threaded rods $F_{t,Rk}$:

Tensile strength of threaded rods:	$F_{t,Rk} = n \cdot k_2 \cdot f_{u,b} \cdot A_s$
with	
Number of threaded rods:	n according to Annex 2
Characteristic tensile strength of threaded rod:	$f_{u,b}$
Cross section of core of threaded rod:	$A_s = 157 \ mm^2$ for rod diameter 16 mm $A_s = 245 \ mm^2$ for rod diameter 20 mm
Factor	$k_2 = 0.9$
For calculation of design values	$\gamma_{m,2} = 1.25 \text{ (EN 1993-1-1)}$

(iv) Embedding strength of thread in aluminium $F_{\tau,Rk}$:

Embedding strength of thread in aluminium:	$F_{\tau,Rk} = R_{p0.2,k} \cdot A_M \cdot \beta_M$
with	
0,2 % yield strength	$R_{p0.2,k} = f_0 = 240 \ N/mm^2 \text{ for EN AW} - 6082$
Cross section of thread:	$A_M = n \cdot d_B \cdot t \cdot \pi$

Number of threaded rods:	n according to Annex 2
Diameter of thread:	$d_{\it B}$ according to Annex 2
Length of thread in aluminium:	t according to Annex 2
Reduction factor:	$\beta_M = 0.4$
For calculation of design values	$\gamma_{m,1} = 1.1 \text{ (EN 1999-1-1)}$

(c) $F_{3,Rk}$ – force acting against direction of insertion:

$$F_{3,Rk} = min \begin{cases} F_{3,J,Rk} \\ F_{3,H,Rk} \end{cases}$$

Characteristic load bearing against direction of insertion for Joist/Header:	$F_{3,J/H,Rk} = n_{45,J/H} \cdot F_{v,45,J/H,Rk} + n_{\alpha,J/H} \cdot F_{v,\alpha,J/H,Rk}$
with	
Load bearing capacity per joint and fastener:	$F_{v,\alpha,J/H,Rk} = 2.3 \cdot \sqrt{M_{y,Rk} \cdot f_{h,J/H,k} \cdot d} + \frac{F_{\alpha x,\alpha,J/H,Rk}}{4}$
	$F_{v,45,J/H,Rk} = 2.3 \cdot \sqrt{M_{y,Rk} \cdot f_{h,J/H,k} \cdot d}$
Characteristic withdrawal strength for a single screw in softwood:	$F_{ax, \propto, J/H, Rk} = 0.52 \cdot d^{0.5} \cdot l_{ef, J/H}^{0.9} \cdot \rho_k^{0.8} \cdot k_{ax}$
Characteristic withdrawal strength for a single screw in hardwood:	$F_{ax,\alpha,J/H,Rk} = 2 \cdot 10^{-3} \cdot l_{ef,J/H} \cdot d^{0.66} \cdot \rho_k^{1.6} \cdot k_\alpha$
Characteristic withdrawal strength for a single screw in Träger BauBuche according to ETA-14/0354:	$F_{ax,\alpha,J,Rk} = 11.7 \cdot d \cdot l_{ef,J}$ $F_{ax,\alpha,H,Rk} = 23.3 \cdot d \cdot l_{ef,H}$
Dimension coefficient	$k_{ax} = 0.3 + 0.7 \cdot \frac{\alpha}{45}$ for $0^{\circ} \le \alpha \le 45^{\circ}$ $k_{ax} = 1.0$ for for $45^{\circ} \le \alpha \le 90^{\circ}$
Coefficient:	$k_{lpha}=0.7$ for Joist $k_{lpha}=1.0$ for Header
Characteristic yield moment of the screw:	$M_{y,Rk}$ according to Annex 1
Number of screws in Joist/Header:	$n_{45,J/H}$ and $n_{\alpha,J/H}$ according to Annex 2 series 150: $n_{45,J/H,max}=28$ and $n_{\alpha,J/H,max}=8$
Effective length of threaded part in the timber member:	$l_{ef,J/H} = l_{Scr,J/H} - 14 mm$ $80 mm \le l_{scr} \le 240 mm$
Characteristic value of embedding strength in softwood:	$f_{h,J,k}=0.033\cdot ho_k\cdot d^{-0.3}$ for Joist $f_{h,H,k}=0.082\cdot ho_k\cdot d^{-0.3}$ for Header
Characteristic value of embedding strength in hardwood:	$f_{h,J/H,k} = \frac{0.082 \cdot \rho_k \cdot (1 - 0.01 \cdot d)}{2.5 \cdot \cos^2 \alpha + \sin^2 \alpha}$
Characteristic value of embedding strength in Träger BauBuche:	$f_{h,J/H,k}$ according to Annex 2 of ETA-14/0354
Angle between screw axis and direction of grain:	$lpha=0^\circ$ for Joist (end grain) $lpha=90^\circ$ for Header (side grain)
For calculation of design values	k_{mod} according to EN 1995-1-1 and $\gamma_m=1.3$

(d) $F_{45,Rk}$ – force acting perpendicular to direction of insertion:

$$F_{45,Rk} = min \begin{cases} F_{45,J,Rk} \\ F_{45,H,Rk} \end{cases}$$

Characteristic load bearing against direction of insertion for Joist/Header:	$F_{45,J/H,Rk} = n_{45,J/H} \cdot F_{v,J/H,Rk}$
with	
Load bearing capacity per joint and fastener:	$F_{v,J/H,Rk} = 2.3 \cdot \sqrt{M_{y,Rk} \cdot f_{h,J/H,k} \cdot d} + \frac{F_{ax,J/H,Rk}}{4}$
Characteristic withdrawal strength for a single screw in softwood:	$F_{ax,J/H,Rk} = 0.52 \cdot d^{0.5} \cdot l_{ef,J/H}^{0.9} \cdot \rho_k^{0.8} \cdot k_{ax}$
Characteristic withdrawal strength for a single screw in hardwood:	$F_{ax,J/H,Rk} = 2 \cdot 10^{-3} \cdot l_{ef,J/H} \cdot d^{0.66} \cdot \rho_k^{1.6} \cdot k_\alpha$
Characteristic withdrawal strength for a single screw in Träger BauBuche according to ETA-14/0354:	$F_{ax,J,Rk} = 11.7 \cdot d \cdot l_{ef,J}$ $F_{ax,H,Rk} = 23.3 \cdot d \cdot l_{ef,H}$
Dimension coefficient	$k_{ax} = 0.3 + 0.7 \cdot \frac{\alpha}{45} \text{ for } 0^{\circ} \le \alpha \le 45^{\circ}$ $k_{ax} = 1.0 \text{ for for } 45^{\circ} \le \alpha \le 90^{\circ}$
Coefficient:	$k_{lpha}=0.7$ for Joist $k_{lpha}=1.0$ for Header
Characteristic yield moment of the screw:	$M_{y,Rk}$ according to Annex 1
Number of screws in Joist/Header:	$n_{45,J/H}$ according to Annex 2 series 150: $n_{45,J/H,max}=28$
Effective length of threaded part in the timber member:	$l_{ef,J/H} = l_{Scr,J/H} - 14 mm$ $80 mm \le l_{scr} \le 240 mm$
Characteristic value of embedding strength in softwood:	$f_{h,J,k} = 0.033 \cdot \rho_k \cdot d^{-0.3}$ for Joist $f_{h,H,k} = 0.082 \cdot \rho_k \cdot d^{-0.3}$ for Header
Characteristic value of embedding strength in hardwood:	$f_{h,J/H,k} = \frac{0.082 \cdot \rho_k \cdot (1 - 0.01 \cdot d)}{2.5 \cdot \cos^2 \alpha + \sin^2 \alpha}$
Characteristic value of embedding strength in Träger BauBuche:	$f_{h,J/H,k}$ according to Annex 2 of ETA-14/0354
Angle between screw axis and direction of grain:	$lpha=0^\circ$ for Joist (end grain) $lpha=90^\circ$ for Header (side grain)
For calculation of design values	k_{mod} according to EN 1995-1-1 and $\gamma_m=1.3$

(e) $M_{2,Rk}$ and $K_{2\phi}$ – moment capacity and spring stiffness:

$$\begin{split} M_{2,Rk} &= min \begin{cases} M_{2,J,Rk} \\ M_{2,H,Rk} \end{cases} \\ K_{2,\varphi,Ser} &= \frac{1}{\frac{1}{K_{2\varphi,H}} + \frac{1}{K_{2\varphi,J}}} \end{cases} \end{split}$$

the Joist/Header:	$\begin{split} M_{2,J,Rk} &= \sum F_{ax}^i \cdot e_{i,J} + \frac{s_{c,0,k} \cdot x_J^2}{3} \\ M_{2,H,Rk} &= \sum F_{ax}^i \cdot e_{i,H} + \frac{s_{c,90,k} \cdot x_H^2}{3} \\ e_{i,J/H} \text{ as the individual distances of the tensile screws in the Joist/Header connection from the center of rotation of the joint} \end{split}$
	$\begin{split} K_{2\varphi,J} &= \sum K_{ser,s}^i \cdot a_{i,J}^2 \\ K_{2\varphi,H} &= \sum K_{ser,s}^i \cdot x_H^2 - 2 \cdot x_H \cdot \sum K_{ser,s}^i \cdot a_{i,H} + \sum K_{ser,s}^i \cdot a_{i,H}^2 + \frac{s_{c,90,k} \cdot x_H^3}{w \cdot 3} \\ a_{i,J/H} \text{ as the individual distances of the tensile screws in the Joist/Header connection from the upper end of the contact area} \end{split}$
with	
Tensile force of a Joist/Header moment screw:	$F_{ax}^i = \frac{F_{ax,J/H,Rk}^i \cdot e_{i,J/H}}{e_{max,J/H}}$ For softwood glulam: $F_{ax,J,Rk} = 0.156 \cdot \sqrt{d} \cdot l_{ef,J}^{0.9} \cdot \rho_{k,J}^{0.8}$ $F_{ax,90,H,Rk} = 0.52 \cdot \sqrt{d} \cdot l_{ef,H}^{0.9} \cdot \rho_{k,H}^{0.8}$ For Beam BauBuche according to ETA-14/0354: $F_{ax,J,Rk} = 11.7 \cdot d \cdot l_{ef,J}$ $F_{ax,H,Rk} = 23.3 \cdot d \cdot l_{ef,H}$ $e_{max,J/H}$ as the distance of the outermost tensile screw in the Joist/Header from the center of rotation of the joint
Maximum value of contribution of compression:	$\begin{split} s_{c,90,k} &= (k_a \cdot (1 - e^{-k_b \cdot w}) \cdot b + l_{dis}) \cdot f_{c,90,k} & \text{for Header} \\ s_{c,0,k} &= b \cdot f_{c,0,k} & \text{for Joist} \\ \text{with} & k_a = 1.7 \text{ and } k_b = 0.6 & \text{for softwood glulam} \\ k_a &= 1.6 \text{ and } k_b = 0.15 & \text{for Träger Baubuche according to ETA-14/0354} \\ w &= 1 \text{ mm as the compressive deformation at the top of the contact area} \\ b \text{ as the width of the contact area} \\ l_{dis} &= \min\{8 \cdot w; 40 mm\} \text{ for softwood glulam} \\ f_{c,0,k} \text{ as the char. compression strength of the Joist parallel to the grain} \\ f_{c,90,k} \text{ as the char. compression strength of the Header perpendicular to the grain} \end{split}$

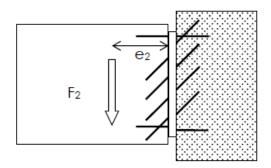
Distance of the centre of rotation of the joint to the end of the contact area (to be determined iteratively):	$x_{J} = \frac{a_{max,J}}{2} + \frac{n_{J} \cdot F_{ax,max}^{i}}{s_{c,0,k}} - \sqrt{\frac{\left(-a_{max,J} - \frac{2 \cdot n_{J} \cdot F_{ax,max}^{i}}{s_{c,0,k}}\right)^{2}}{4} - \frac{2 \cdot F_{ax,max}^{i}}{s_{c,0,k}} \cdot \sum_{i=1}^{n} a_{i,J}}$ $x_{H} = \frac{a_{max,H}}{2} + \frac{n_{H} \cdot F_{ax,max}^{i}}{s_{c,90,k}} - \sqrt{\frac{\left(-a_{max,H} - \frac{2 \cdot n_{H} \cdot F_{ax,max}^{i}}{s_{c,90,k}}\right)^{2}}{4} - \frac{2 \cdot F_{ax,max}^{i}}{s_{c,90,k}} \cdot \sum_{i=1}^{n} a_{i,H}}}{a_{max,J/H}}$ as the maximum distance of the tensile screws in the Joist/Header connection from the upper end of the contact area $n_{J/H}$ as the number of tensile screws in Joist/Header
Spring stiffness of the screws:	$K_{ser,s}^i = rac{F_{ax,J/H,Rk}^i}{0.5} extsf{N/mm}$

 $^{1)}\,K_{2,\phi}$ for the ultimate limit state shall be calculated as:

$$K_{2,\varphi} = \frac{{}_{2\cdot K_{2,\varphi,ser}}}{{}_{3\cdot \left(1+2\cdot \psi_2\cdot k_{def}\right)}}$$

Where

 ψ_2combination factor according to EN 1990 for the quasi-permanent value of the action causing the largest stress in relation to the strength


 k_{def} deformation factor according to EN 1995-1-1

(f) Combined loading:

For combined loading, the following needs to be valid

$$\left(\frac{F_{1,Ed}}{F_{1,Rd}} + \frac{M_{2,Ed}}{M_{2,Rd}} \right)^2 + \left(\frac{F_{2,Ed}}{F_{2,Rd}} \right)^2 + \left(\frac{F_{3,Ed}}{F_{3,Rd}} \right)^2 + \left(\frac{F_{45,Ed}}{F_{45,Rd}} \right)^2 + \left(\frac{M_{tor,Ed}}{M_{tor,Rd}} \right) \le 1$$

Moments $M_{2,Ed}$ only need to be considered if the force $F_{2,Ed}$ acts outside the MEGANT connector.

Where
$$e_2 = \frac{M_{2,Ed}}{F_{2,Ed}}$$

2. Tension reinforcement

- (a) Tension perpendicular to the grain in main- and secondary beam loaded in direction of insertion F_2
 - (i) No further calculation is needed if:

$$\frac{a_J}{H_J}$$
 > 0.7 and $\frac{a_H}{H_H}$ > 0.7

with	
Distance of screw row to the loaded edged of the wooden member:	$a_{J/H}$ according to Annex 7
Height of secondary and main beam:	$H_{J/H}$ according to Annex 7

(ii) Tension perpendicular to the grain for timber members with $0.2 \le \frac{a_{J/H}}{H_{J/H}} \le 0.7$:

The following expressions shall be satisfied for timber members without reinforcement:		
For joist and header:	$\left(\frac{F_{90,d}}{F_{90,J/H,Rd}}\right) \le 1.0$	
with		
	$F_{90,J/H,Rd} = k_{J/H} \cdot k_{s,J/H} \cdot k_{r,J/H} \cdot \left[6.5 + 18 \cdot \left(\frac{a_{J/H}}{H_{J/H}} \right)^2 \right] \cdot \left(t_{ef} \cdot H_{J/H} \right)^{0.8} \cdot f_{t,90,d}$	
Factor	$k_{J}=0.5$ in joist and $k_{H}=1.0$ in header	
Factor	$k_{s,J/H} = max \begin{cases} 1\\ 0.7 + \frac{1.4 \cdot a_{r,J/H}}{H_{J/H}} \end{cases}$	
	MEGANT series 60: $a_{r,J/H}=40\ mm$ MEGANT series 100: $a_{r,J/H}=80\ mm$ MEGANT series 150: $a_{r,J/H}=130\ mm$	
Factor	$k_{r,J/H} = \frac{n_{J/H}}{\sum_{i=1}^{n_{J/H}} \left(\frac{h_{1,J/H}}{h_{i,J/H}}\right)^2}$	
Distance of screw row to the unloaded edged of the wooden member:	h_i according to Annex 7	
Effective depth	$t_{ef} = min iggl\{ rac{B_{J/H}}{\sqrt{2}} iggr\}$ see Annex 7	

The following expressions shall be used to reinforce timber members:	
For joist and header:	$\left(\frac{F_{t,90,J/H,d}}{n \cdot F_{ax,Rd}}\right) \le 1$
with	
	$F_{t,90,J/H,d} = \left[1 - 3 \cdot \left(\frac{a_{J/H}}{H_{J/H}}\right)^2 + 2 \cdot \left(\frac{a_{J/H}}{H_{J/H}}\right)^3\right] \cdot F_{90,d}$
Number of fully threaded self-tapping screws for reinforcement	n
Characteristic withdrawal strength:	$F_{ax,Rd}$ according to EN 1995-1-1 or ETA

3.

- (b) Tension perpendicular to the grain in main- and secondary beam loaded perpendicular to direction of insertion F_{45}
 - (iii) No further calculation is needed if:

$$\frac{a_J}{B_J}$$
 > 0.7 and $\frac{a_H}{B_H}$ > 0.7

with	
Distance of screw row to the loaded edged of the wooden member:	$a_{J/H}$ according to Annex 7
Width of main and secondary beam:	$B_{J/H}$ according to Annex 7

(iv)Tension perpendicular to the grain for timber members with $0.2 \le \frac{a_{J/H}}{B_{J/H}} \le 0.7$:

The following expressions shall be satisfied for timber members without reinforcement:	
For joist and header:	$\left(\frac{F_{90,d}}{F_{90,J/H,Rd}}\right) \le 1.0$
with	
	$F_{90,J/H,Rd} = k_{J/H} \cdot k_{s,J/H} \cdot k_{r,J/H} \cdot \left[6.5 + 18 \cdot \left(\frac{a_{J/H}}{B_{J/H}} \right)^{2} \right] \cdot \left(t_{ef} \cdot B_{J/H} \right)^{0.8} \cdot f_{t,90,d}$
Factor	$k_{I}=0.5$ in joist and $k_{H}=1.0$ in header

Factor	$k_{s,J/H} = max \begin{cases} 1\\ 0.7 + \frac{1.4 \cdot a_{r,J/H}}{B_{J/H}} \end{cases}$
	MEGANT height $h=310~mm$: $a_{r,J/H}=171~mm$ MEGANT height $h=430~mm$: $a_{r,J/H}=285~mm$ MEGANT height $h=550~mm$: $a_{r,J/H}=399~mm$
Factor	$k_{r,J/H} = \frac{n_{J/H}}{\sum_{i=1}^{n_{J/H}} \left(\frac{b_{1,J/H}}{b_{i,J/H}}\right)^2}$
Distance of screw row to the unloaded edged of the wooden member:	b_i according to Annex 7
Effective depth	$t_{ef} = 48 \ mm$

The following expressions shall be used to reinforce timber members:	
For joist and header:	$\left(\frac{F_{t,90,J/H,d}}{n \cdot F_{ax,Rd}}\right) \le 1.0$
with	
	$F_{t,90,J/H,d} = \left[1 - 3 \cdot \left(\frac{a_{J/H}}{B_{J/H}}\right)^2 + 2 \cdot \left(\frac{a_{J/H}}{B_{J/H}}\right)^3\right] \cdot F_{90,d}$
Number of fully threaded self-tapping screws for reinforcement	n
Characteristic withdrawal strength:	$F_{ax,Rd}$ according to EN 1995-1-1 or ETA

3. MEGANT - timber to steel connections:

Main beam from steel and secondary beam as timber construction for load direction F2:

$$F_{2,Rd} = min \begin{cases} F_{2,J,Rd} \\ F_{2,steel,Rd} \end{cases}$$

Structural analysis of timber connection:

$$F_{2,J,Rd} = min \begin{cases} F_{2,KCC,Rk}/\gamma_{M1} \\ F_{2,Rk} \cdot k_{mod}/\gamma_{M,timber} \end{cases}$$

with

$$\gamma_{M1} = 1.1$$
 and $\gamma_{M,timber} = 1.3$

Structural analysis of steel connection:

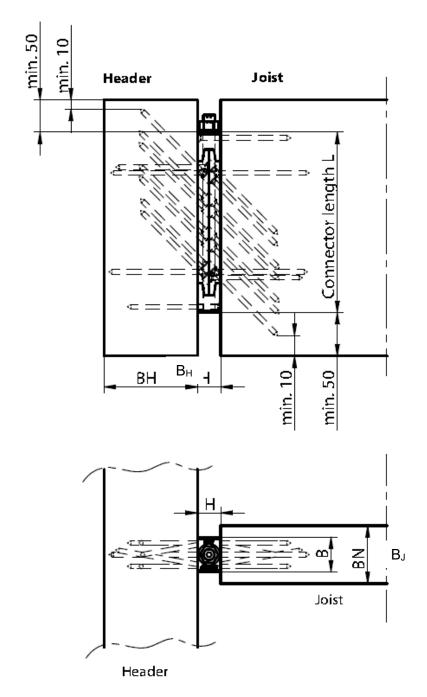
$$F_{2,Steel,Rd} = min \begin{cases} n \cdot F_{v,Rd} \\ n \cdot F_{b,Megant,Rd} \\ n \cdot F_{b,Steelplate,Rd} \end{cases}$$

$$F_{v,Rd} = \frac{n \cdot \alpha_v \cdot f_{ub,k} \cdot A_s}{\gamma_{M2}} \qquad \text{according to EN 1993-1-8/3.6.1}$$

$$F_{b,Megant,Rd} = \frac{k_1 \cdot \alpha_b \cdot f_u \cdot d_1 \cdot t}{\gamma_{M2}} \qquad \text{according to EN 1999}$$

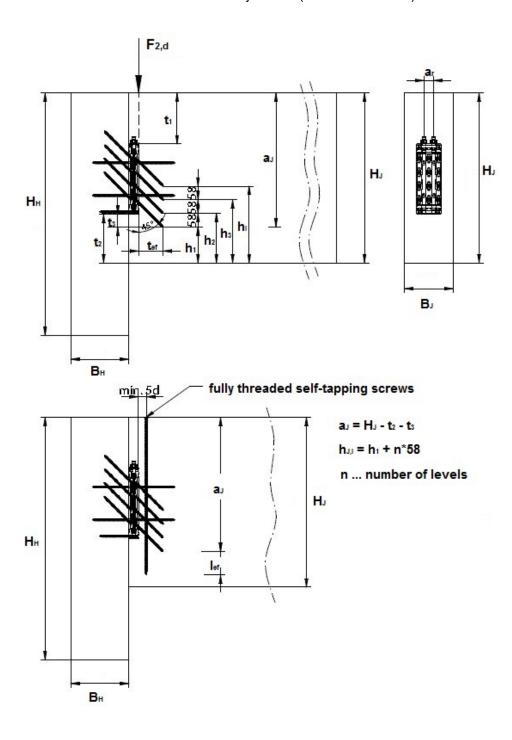
$$F_{b,Steelplate,Rd} = \frac{n \cdot k_1 \cdot \alpha_b \cdot f_u \cdot d_1 \cdot t}{\gamma_{M2}} \qquad \text{according to EN 1993-1-8/3.6.1}$$
 with

Additional loading directions must be calculated similar, following the rules of EC3 and EC9.

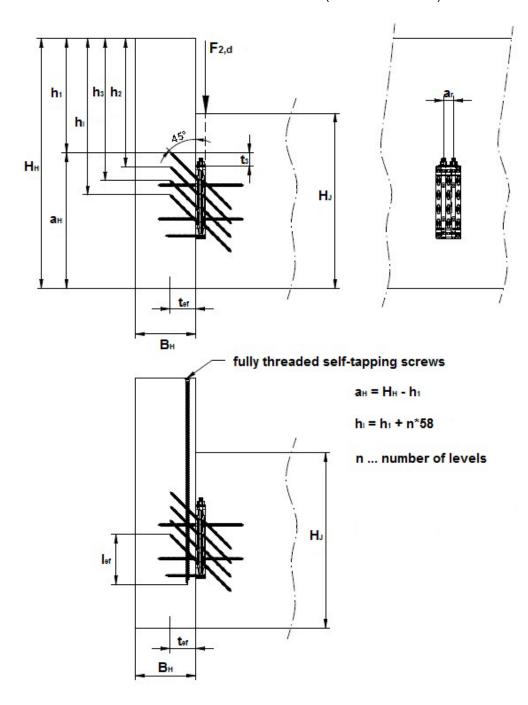

4. MEGANT - timber to concrete connections:

 $\gamma_{M2} = 1.25$

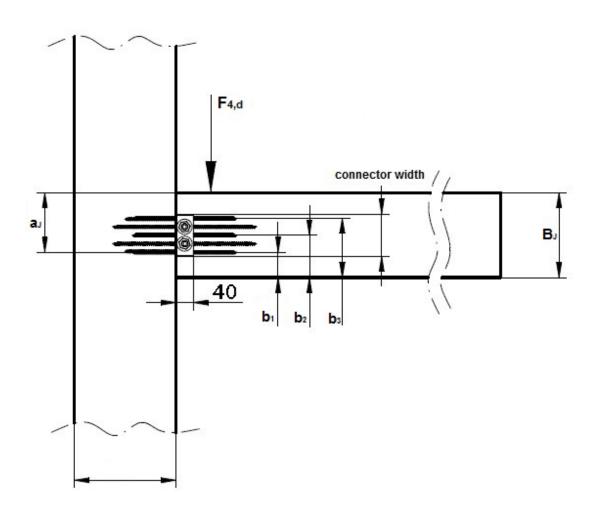
The connector MEGANT may be installed to members made of concrete with suitable fasteners. Design of connections with connectors in wood to concrete connections shall follow the respective Eurocode.


ANNEX 6: MEGANT® / Dimensions and minimum spacing

MEGANT (AW 6082) header / joist connection (dimensions in mm)


ANNEX 7: MEGANT® / Tension renforcement

Tension reinforcement in joist - F_2 (dimensions in mm)


ANNEX 7: MEGANT® / Tension renforcement

Tension reinforcement in header - F2 (dimensions in mm)

ANNEX 7: MEGANT® / Tension renforcement

Tension renforcement – F₄ (dimensions in mm)

British Board of Agrément, Bucknalls Lane,

Bucknalls Lane Watford, Hertfordshire WD25 9BA