Austrian Institute of Construction Engineering Schenkenstrasse 4 | T+43 1 533 65 50 1010 Vienna | Austria | F+43 1 533 64 23

www.oib.or.at | mail@oib.or.at

European Technical Assessment

ETA-15/0667 of 22.07.2019

General part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This European Technical Assessment replaces

Österreichisches Institut für Bautechnik (OIB) Austrian Institute of Construction Engineering

Knapp Clip connector type MEGANT series 60, 100, 150

Three-dimensional nailing plate (connector for wood to wood connections and wood to concrete or steel connections)

Knapp GmbH Wassergasse 31 3324 Euratsfeld Austria

Knapp GmbH Wassergasse 31 3324 Euratsfeld Austria

74 pages including 8 Annexes which form an integral part of this assessment.

Guideline for European Technical Approval ETAG 015 "Three-dimensional nailing plates", Edition November 2012, used as European Assessment Document.

European Technical Assessment ETA-15/0667 of 20.11.2015.

Remarks

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of Austrian Institute of Construction Engineering. Any partial reproduction has to be identified as such.

Specific parts

1 Technical description of the product

1.1 General

This European Technical Assessment (ETA)¹ applies to the connector MEGANT to be used in loadbearing timber to timber or timber to steel or concrete connections. MEGANT consists of two connector plates installed into the timber with self-tapping screws with diameter 8 mm and to members made of steel or concrete with suitable fasteners. Clamping jaws are placed at the bottom and at the top of the connector plates and connected by a defined number of threaded rods fixed with hexagonal nuts, see Annex 1 and Annex 2. The overall thickness of MEGANT is 40 or 50 mm.

The production series MEGANT includes 15 different types of connectors for timber to timber or timber to steel connections in the following 3 configurations with variable height

- 60 mm width with two rows of screws and 40 mm thickness
- 100 mm width with three rows of screws and 40 mm thickness
- 150 mm width with four rows of screws and 50 mm thickness

MEGANT corresponds to the specifications given in the Annexes 1, 2 and 4. The material characteristics, dimensions and tolerances of MEGANT, not indicated in these Annexes, are given in the technical file² of the European Technical Assessment.

1.2 Connector plates

The connector plates together with their most important dimensions are shown in Annex 2. The connector plates are produced of aluminium EN AW - 6082 according to EN 755-2³.

The different types of connector plates can be adapted for wood to steel or concrete connections, see Annex 2.

1.3 Screws

The screws for installation of the two connector plates into the timber are described in Annex 1. They are made of carbon steel or stainless steel.

1.4 Clamping jaw

Clamping jaws are placed at the bottom and at the top of the connector plates in order to connect the two plates by threaded rods. The clamping jaw at the bottom is provided with a thread.

The clamping jaws are described in Annex 2. They are made of aluminium EN AW - 6082 according to EN 755-2.

In 2015 ETA-15/0667 was firstly issued as European Technical Assessment ETA-15/0667 of 20.11.2015 and amended to ETA-15/0667 of 22.07.2019.

The technical file of the European Technical Assessment is deposited at Österreichisches Institut für Bautechnik and, in so far as is relevant to the tasks of the notified factory production control certification body involved in the assessment and verification of constancy of performance procedure, is handed over to the notified factory production control certification body.
 Reference documents are listed in Annex 8.

1.5 Threaded rods

The threaded rods (M16 or M20, property class 8.8) for connection of the connector plates by clamping jaws are described in Annex 1. They are made of carbon steel or stainless steel.

1.6 Hexagonal nuts and washers

The hexagonal nuts and washers, used to fix the threaded rods at the top of the connector, are described in Annex 1. The hexagonal nuts are produced according to EN ISO 4032 (strength class 8.8), the washers are produced according to ISO 7090. They are made of carbon steel or stainless steel.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document

2.1 Intended use

The connectors are intended to be used in load bearing connections of timber structures as end grain to side grain, end grain to end grain or side grain to side grain connections, e.g. between beams as well as connections between timber and a concrete structure or a steel member.

The connectors are used for connections in load bearing timber structures between the following wood-based members:

- Solid timber of softwood/hardwood of strength class C24/D24 or better according to EN 338 and EN 14081-1,
- Glued laminated timber of strength class GL24c or better according to EN 14080
- Glued laminated timber of hardwood according to European Technical Assessments or national standards and regulations in force at the place of use,
- Laminated veneer lumber LVL according to EN 14374 or according to European Technical Assessments,
- Solid wood members similar to glued laminated timber (typically e.g. Duo- and Triobalken) according to EN 14080 or national standards and regulations in force at the place of use,
- Cross laminated timber according to European Technical Assessments or national standards and regulations in force at the place of use,
- Strand lumber (e.g. Laminated Strand Lumber Intrallam LSL, Parallam PSL) according to European Technical Assessments or national standards and regulations in force at the place of use.

The typical installation of the connectors is shown in Annex 3.

The connectors shall be subjected to static and quasi static actions only.

The connectors are intended to be used in service classes 1 and 2 according to EN 1995-1-1.

2.2 General assumptions

MEGANT is manufactured in accordance with the provisions of the European Technical Assessment using the manufacturing process as identified in the inspection of the manufacturing plant by Österreichisches Institut für Bautechnik and laid down in the technical file.

The manufacturer shall ensure that the requirements in accordance with the Clauses 1, 2 and 3 as well as with the Annexes of the European Technical Assessment are made known to those who are concerned with design and execution of the works.

<u>Design</u>

The European Technical Assessment only applies to the manufacture and use of MEGANT. Verification of stability of the works including application of loads on the connector is not subject of the European Technical Assessment.

The following conditions shall be observed:

- Design of connections with MEGANT is carried out under the responsibility of an engineer experienced in timber structures.
- Design of the works shall account for the protection of the connections to maintain service class 1 or 2 according to EN 1995-1-1.
- MEGANT is installed correctly.
- It shall be checked in accordance with EN 1995-1-1 that splitting will not occur.

Design of connections with MEGANT may be according to EN 1995-1-1 and EN 1995-1-2 taking into account the Annexes of the European Technical Assessment. Standards and regulations in force at the place of use shall be considered.

Design of connections with connectors in wood to steel or concrete connections may be according to Eurocode 2, 3, 5 or 9 and Annex 5.

Packaging, transport, storage, maintenance, replacement and repair

Concerning product packaging, transport, storage, maintenance, replacement and repair it is the responsibility of the manufacturer to undertake the appropriate measures and to advise his clients on the transport, storage, maintenance, replacement and repair of the product as he considers necessary.

Installation

It is assumed that the product will be installed according to the manufacturer's instructions or (in absence of such instructions) according to the usual practice of the building professionals.

The beam hangers shall be screwed as specified in Annex 2. In hardwood connections the screws shall be driven in predrilled holes with diameter 6 mm. The inclined screws installed into glued laminated timber of hardwood or laminated veneer lumber of hardwood may be installed without predrilling whereas the moment screws shall be predrilled.

The structural members which are connected with MEGANT shall be

- torsional fixed, or for the case that the members are not torsional fixed, the characteristic load bearing capacity shall be attenuated by f_{R2} according to Annex 5;
- wood-based members according to clause 2.1;
- free from wane under the connector;
- with plane surfaces against the connector;
- without virtually gap between the timber members;
- with minimum spacing and edge distances are in accordance with EN 1995-1-1 or European Technical Assessment.

The rules for wood to wood connections are also applicable for the connection between wood to concrete or steel.

In addition, the following conditions shall be observed:

- The connector shall be close in contact with the concrete or steel over the whole face.
- The fastener shall have a diameter not less than the hole diameter minus 2 mm.

2.3 Assumed working life

The provisions made in the European Technical Assessment (ETA) are based on an assumed intended working life of MEGANT of 50 years, when installed in the works, provided that the product is subject to appropriate installation, use and maintenance (see clause 2.2). These provisions are based upon the current state of the art and the available knowledge and experience⁴.

The indications given as to the working life of the construction product cannot be interpreted as a guarantee neither given by the product manufacturer or his representative nor by EOTA nor by the Technical Assessment Body, but are regarded only as a means for choosing the appropriate products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and reference to the methods used for its assessment

3.1 Essential characteristics of the product

Table 1: Essential characteristics of the product and assessment methods

N⁰	Essential characteristic	Product performance		
	Basic requirement for construction works 1: Med	chanical resistance and stability ¹⁾		
1	Characteristic load bearing capacity	3.1.1		
2	Stiffness	3.1.2		
3	Ductility in cyclic testing	No performance assessed.		
	Basic requirement for construction work	s 2: Safety in case of fire		
4	Reaction to fire	3.1.3		
5	Resistance to fire	No performance assessed.		
	Basic requirement for construction works 3: Hygiene, health and the environment			
6	Content, emission and/or release of dangerous substances	3.1.4		
	Basic requirement for construction works 4:	Safety and accessibility in use		
7	Same as basic requirement for construction wo	rks 1		
	Basic requirement for construction works	5: Protection against noise		
_	Not relevant. No characteristic assessed.			
	Basic requirement for construction works 6: Energy economy and heat retention			
_	Not relevant. No characteristic assessed.			
	Basic requirement for construction works 7: Sus	tainable use of natural resources		
_	No characteristic assessed.			

General aspects			
8 Resistance to corrosion and deterioration 3.1.5			
9	Dimensional stability	3.1.6	
¹⁾ These characteristics also relate to basic requirement for construction works 4.			

3.1.1 Characteristic load bearing capacity

The characteristic load bearing capacities of the connectors are determined by calculation assisted by testing. The connectors are installed with a defined number of screws with respective nominal diameter as specified in Annex 1 and Annex 2. Kinematic restraints are defined in Annex 4.

The values of the characteristic load bearing capacities for the loading directions F_1 , M_{tor} , F_2 , M_2 , F_3 and F_{45} , as defined in Annex 4, are given in Annex 5.

If the connectors are connected to structural members made of steel or concrete, suitable fasteners are used. The same load bearing capacities shall be used as for timber-to-timber connections given in Annex 5, provided the fasteners are designed to exceed the load bearing capacities of the connector to timber connections. In addition, for loading in direction of insertion, the specifications for connections between wooden members and steel and concrete members given in Annex 5 shall be considered.

3.1.2 Stiffness

The stiffness of the connectors was determined by calculation assisted by testing. The connectors are installed with a defined number of screws with respective nominal diameter as specified in Annex 1 and Annex 2. The stiffness values are given in Annex 5.

3.1.3 Reaction to fire

Connector plates and clamping jaws are made of aluminium and the screws, threaded rods, hexagonal nuts and washers are made of carbon steel or of stainless steel, all classified as Euroclass A1 in accordance with Commission Decision 96/603/EC as amended.

3.1.4 Content, emission and/or release of dangerous substances

The release of dangerous substances is determined according to Guideline for European Technical Approval ETAG 015 "Three-dimensional nailing plates", Edition November 2012, used as European Assessment Document. No dangerous substances is the performance of MEGANT in this respect.

NOTE In addition to the specific clauses relating to dangerous substances contained in the European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.1.5 Resistance to corrosion and deterioration

The product is intended to be used in service classes 1 and 2 according to EN 1995-1-1. The product and each member of the connection should at least be suitable for service classes 1 and 2, but not for service class 1 only.

In accordance with ETAG 015 and EN 1995-1-1 the connector plates and clamping jaws are made of aluminium EN AW - 6082 according to EN 755-2 with durability class B according to EN 1999-1-1. Screws, threaded rods, hexagonal nuts and washers are made of carbon steel and galvanised or of stainless steel.

electronic copv

lectronic copv

3.1.7 Dimensional stability

The effects of dimensional changes on the structural timber members being jointed due to varying moisture content was considered by the determination of the characteristic load bearing capacity and stiffness of the joints. Moisture content during service shall not change to such an extent that adverse deformation will occur. The conditions of Clause 2.2 shall be observed.

3.2 Assessment methods

3.2.1 General

The assessment of the essential characteristics in Clause 3.1 of MEGANT for the intended use, and in relation to the requirements for mechanical resistance and stability, for safety in case of fire, for hygiene, health and the environment and for safety and accessibility in use in the sense of the basic requirements for construction works № 1, 2, 3 and 4 of Regulation (EU) № 305/2011 has been made in accordance with Guideline for European Technical Approval ETAG № 015 "Three-dimensional nailing plates", edition November 2012, used as European Assessment Document.

3.2.2 Identification

The European Technical Assessment for MEGANT is issued on the basis of agreed data that identify the assessed product. Changes to materials, to composition, to characteristics of the product, or to the production process could result in these deposited data being incorrect. Österreichisches Institut für Bautechnik should be notified before the changes are implemented, as an amendment of the European Technical Assessment is possibly necessary.

4 Assessment and verification of constancy of performance (thereinafter AVCP) system applied, with reference to its legal base

4.1 System of assessment and verification of constancy of performance

According to Commission Decision 97/638/EC the system of assessment and verification of constancy of performance to be applied to MEGANT is System 2+. System 2+ is detailed in Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014, Annex, 1.3, and provides for the following items

- (a) The manufacturer shall carry out:
 - (i) an assessment of the performance of the construction product carried out on the basis of testing (including sampling), calculation, tabulated values or descriptive documentation of that product;
 - (ii) factory production control;
 - (iii) testing of samples taken at the manufacturing plant by the manufacturer in accordance with a prescribed test plan⁵.
- (b) The notified factory production control certification body shall decide on the issuing, restriction, suspension or withdrawal of the certificate of conformity of the factory production control on the basis of the outcome of the following assessments and verifications carried out by that body:
 - (iv) initial inspection of the manufacturing plant and of factory production control;
 - (v) continuing surveillance, assessment and evaluation of factory production control.

⁵ The prescribed test plan has been deposited with Österreichisches Institut für Bautechnik and is handed over only to the notified factory production control certification body involved in the procedure for the assessment and verification of constancy of performance. The prescribed test plan is also referred to as control plan.

4.2 AVCP for construction products for which a European Technical Assessment has been issued

Manufacturers undertaking tasks under Systems 2+ shall consider the European Technical Assessment issued for the construction product in question as the assessment of the performance of that product. Manufacturers shall therefore not undertake the tasks referred to in point 4.1 (a)(i).

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

5.1 Tasks for the manufacturer

5.1.1 Factory production control

In the manufacturing plant the manufacturer shall establish and continuously maintain a factory production control. All procedures and specification adopted by the manufacturer shall be documented in a systematic manner. The factory production control shall ensure the constancy of performances of MEGANT with regard to the essential characteristics.

The manufacturer shall only use raw materials supplied with the relevant inspection documents as laid down in the control plan. The incoming raw materials shall be subject to controls by the manufacturer before acceptance. Check of incoming materials shall include control of inspection documents presented by the manufacturer of the raw materials.

The frequencies of controls and tests conducted during manufacturing and on the assembled product are defined by taking account of the manufacturing process of the product and are laid down in the control plan.

The results of factory production control are recorded and evaluated. The records include at least the following data:

- Designation of the product, basic materials and components
- Type of control or test
- Date of manufacture of the product and date of testing of the product or basic materials or components
- Results of controls and tests and, if appropriate, comparison with requirements
- Name and signature of person responsible for factory production control

The records shall be presented to the notified factory production control certification body involved in continuous surveillance. On request the records shall be presented to Österreichisches Institut für Bautechnik.

5.1.2 Declaration of performance

The manufacturer is responsible for preparing the declaration of performance. When all the criteria of the assessment and verification of constancy of performance are met, including the certificate of conformity of the factory production control issued by the notified factory production control certification body, the manufacturer shall draw up a declaration of performance.

5.3 Tasks for the notified factory production control certification body

5.3.1 Initial inspection of the manufacturing plant and of factory production control

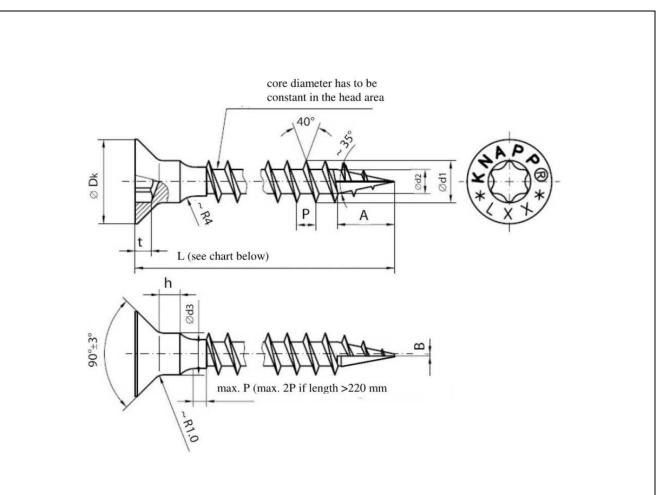
The notified factory production control certification body shall verify the ability of the manufacturer for a continuous and orderly manufacturing of MEGANT according to the European Technical Assessment. In particular the following items shall be appropriately considered.

- Personnel and equipment
- The suitability of the factory production control established by the manufacturer
- Full implementation of the control plan
- 5.3.2 Continuing surveillance, assessment and evaluation of factory production control

The notified factory production control certification body shall visit the factory at least once a year for routine inspection. In particular the following items shall be appropriately considered.

- The manufacturing process including personnel and equipment
- The factory production control
- The implementation of the control plan

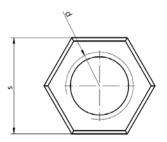
The results of continuous surveillance shall be made available on demand by the notified factory production control certification body to Österreichisches Institut für Bautechnik. When the provisions of the European Technical Assessment and the control plan are no longer fulfilled, the certificate of conformity of the factory production control shall be withdrawn.

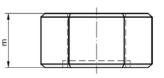

Issued in Vienna on 22.07.2019 by Österreichisches Institut für Bautechnik

The original document is signed by:

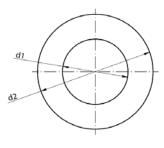
Rainer Mikulits

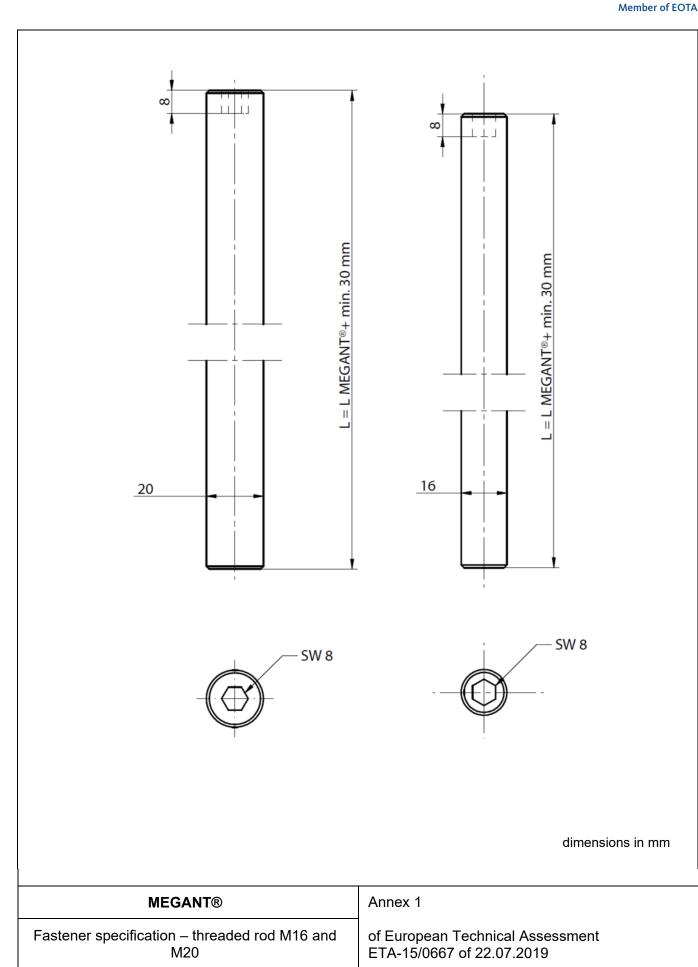
Managing Director



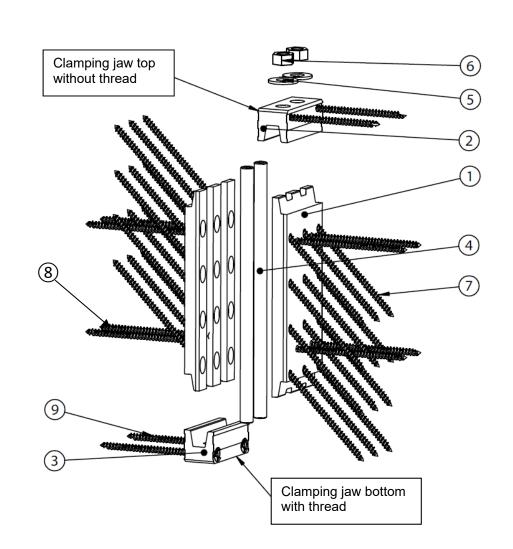


Self-tapping screw 8 x L mm		
E-Modulus	210 000 N/mm ²	
Min. char. tensile strength ftens,k	20 kN	
Min. char. yield moment M _{y,k}	20 Nm	
Min. char. torsional strength f _{tor,k}	23 Nm	
Head diameter D _k	15 mm	
Outer thread diameter d ₁	8 mm	
Inner thread diameter d ₂	5.1 mm	
Length L	80 - 240 mm	

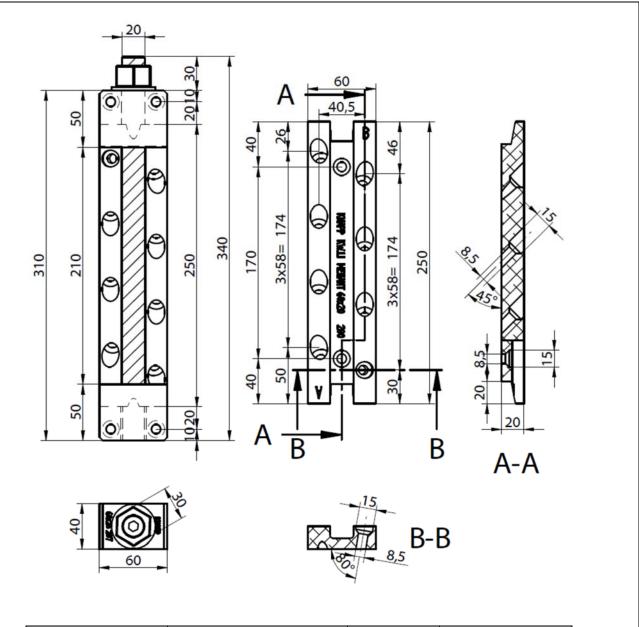

MEGANT®	Annex 1
Fastener specification – self-tapping screw	of European Technical Assessment ETA-15/0667 of 22.07.2019


Hexagonal nut	Diameter d	Width across flat s	Thickness m
-	mm	mm	mm
M8	8	13	6.5
M10	10	17	8
M16	16	24	13
M20	20	30	16

Washer	Inner diameter d ₁	Outer diameter d ₂	Thickness m
-	mm	mm	mm
M8	8.4	16	1.6
M10	10.5	20	2
M16	17	30	3
M20	21	37	3

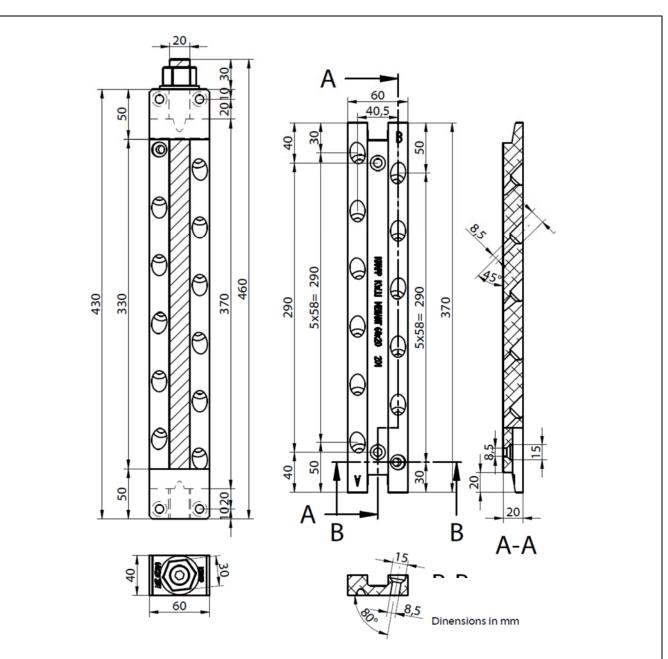

MEGANT®	Annex 1
Fastener specification – hexagonal nut and washer	of European Technical Assessment ETA-15/0667 of 22.07.2019

electronic copy



Position number	Name	
1	Connector plate	
2	Clamping jaw top	
3	Clamping jaw bottom	
4	Threaded rod	
5	Washer	
6	Hexagonal nut	
7	Inclined screws	
8	Horizontal (position) screws	
9	Clamping jaw screws	

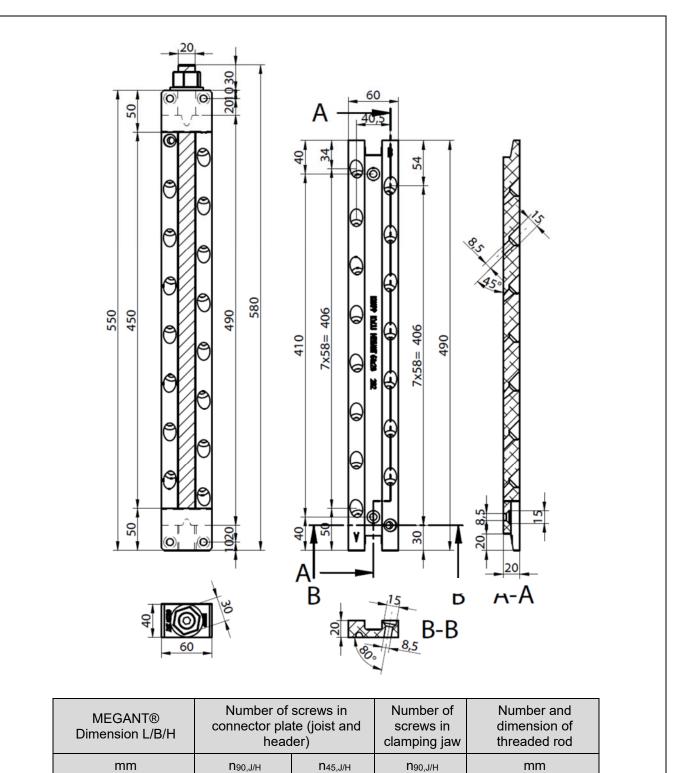
MEGANT®	Annex 2	
Product details definitions: assembling of the connector	of European Technical Assessment ETA-15/0667 of 22.07.2019	



MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw	Number and dimension of threaded rod
mm	N _{90,J/H} N _{45,J/H}		N 90,J/H	mm
310x60x40	3	7	2	1x M20x340

dimensio	ns in	mm
unnensio	113 111	

MEGANT® 60	Annex 2
Connector plate for wood	of European Technical Assessment
Туре: <u>310х60х40</u>	ETA-15/0667 of 22.07.2019



MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw	Number and dimension of threaded rod
mm	N 90,J/H	N 45,J/H	N 90,J/H	mm
430x60x40	3	11	2	1x M20x460

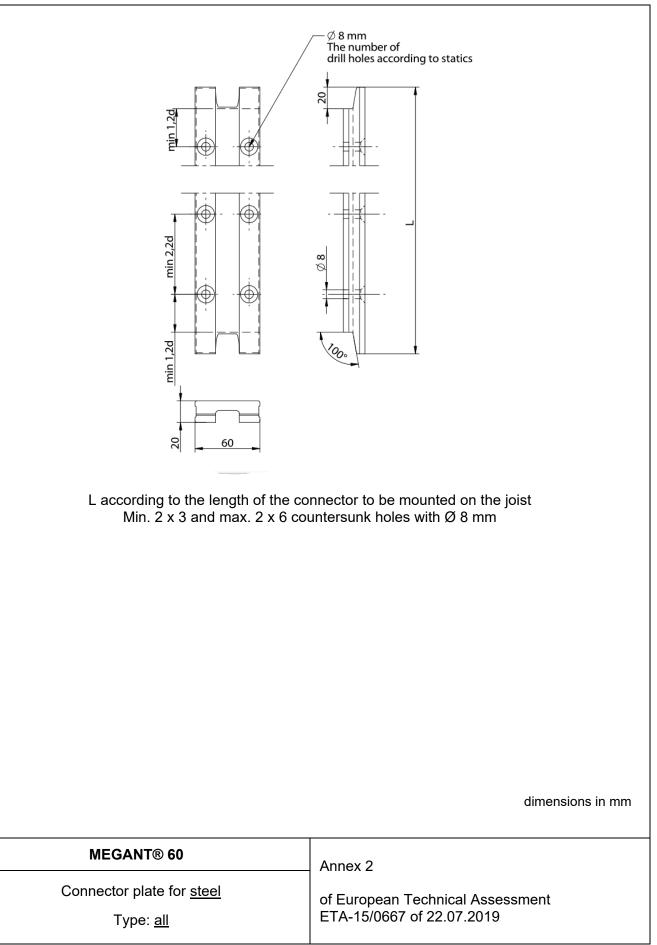
dimensions in mm

MEGANT® 60	Annex 2
Connector plate for <u>wood</u>	of European Technical Assessment
Type: <u>430x60x40</u>	ETA-15/0667 of 22.07.2019

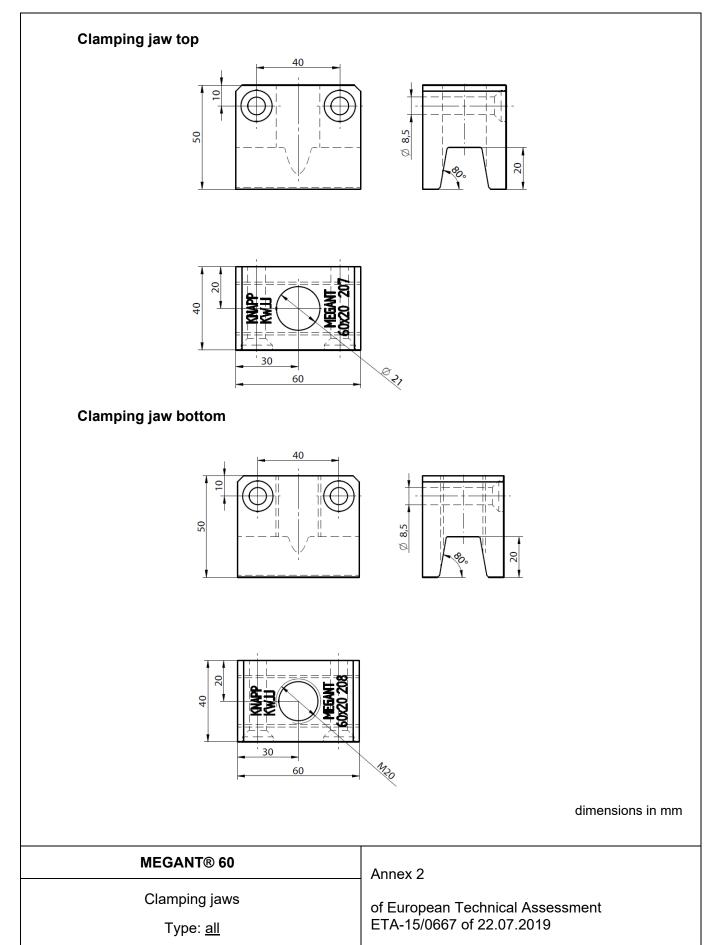
dimensions in mm

1x M20x580

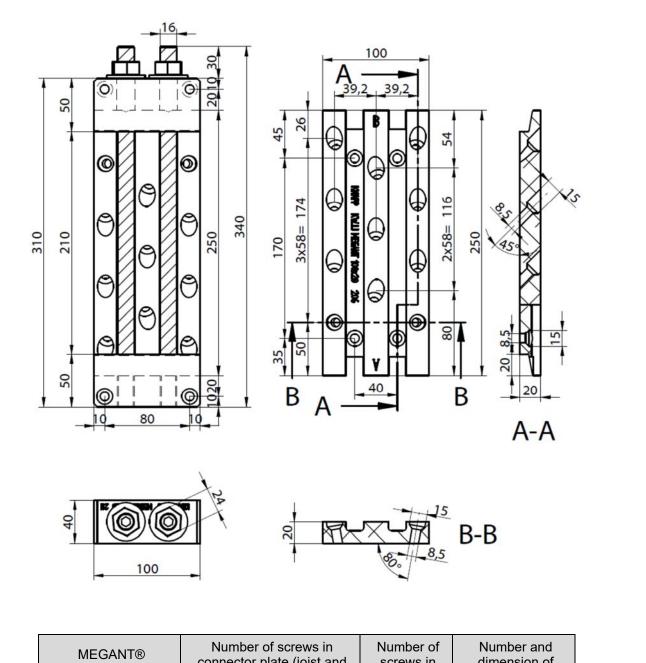
MEGANT® 60	Annex 2
Connector plate for <u>wood</u>	of European Technical Assessment
Type: <u>550x60x40</u>	ETA-15/0667 of 22.07.2019

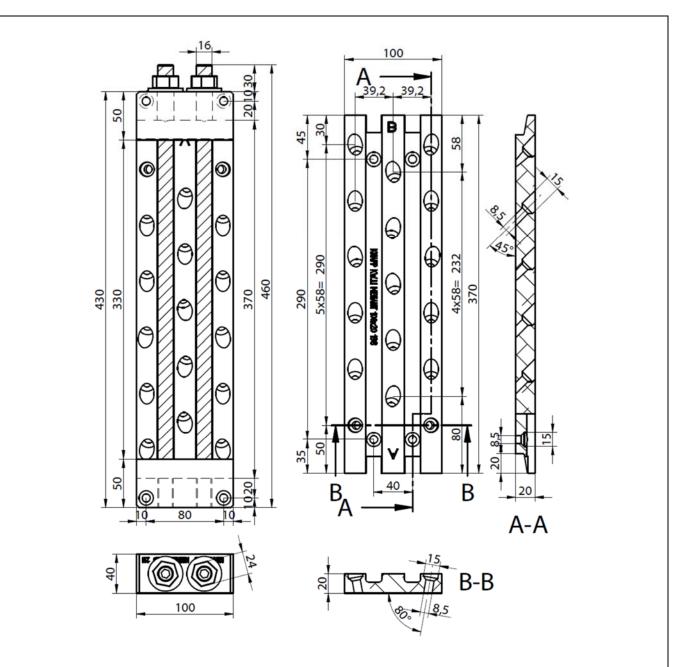

15

2


3

550x60x40

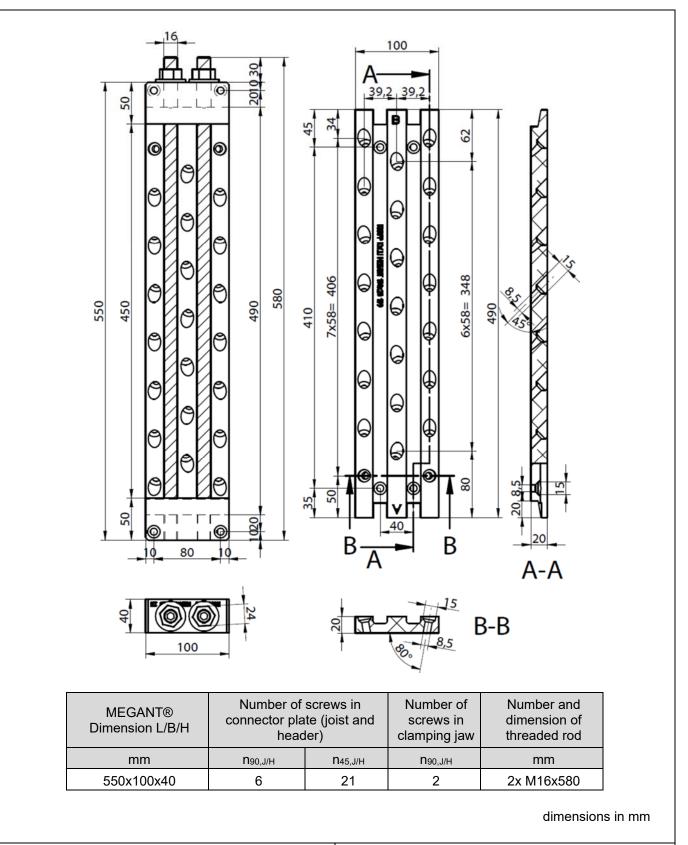




MEGANT® Dimension L/B/H	connector plate (joist and header)		screws in clamping jaw	Number and dimension of threaded rod
mm	N 90,J/H	N 45,J/H	N 90,J/H	mm
310x100x40	6	9	2	2x M16x340

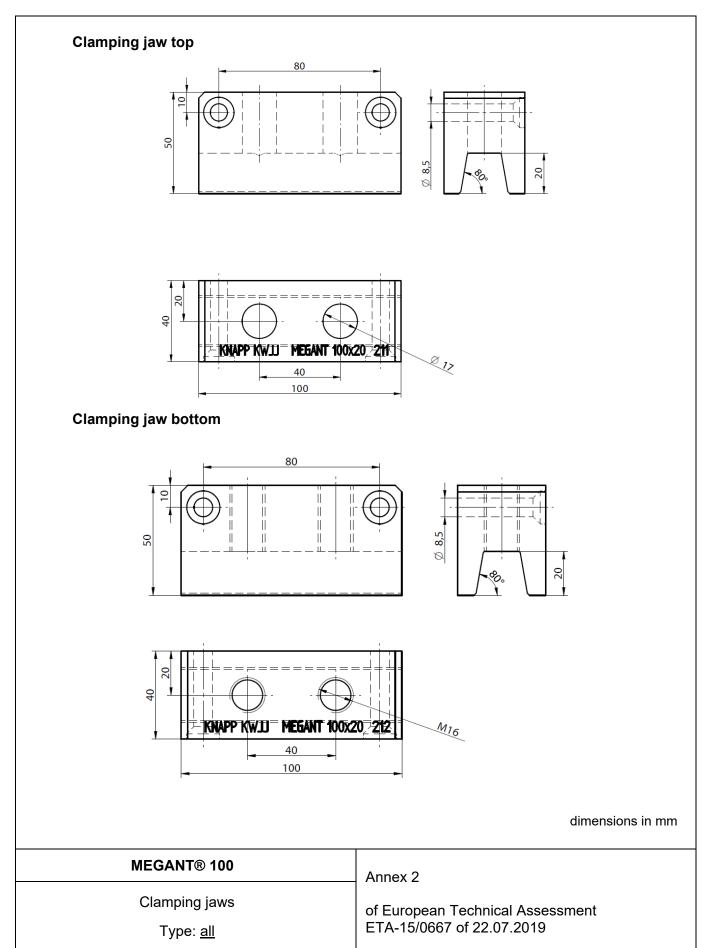
dimensions	ın	mm

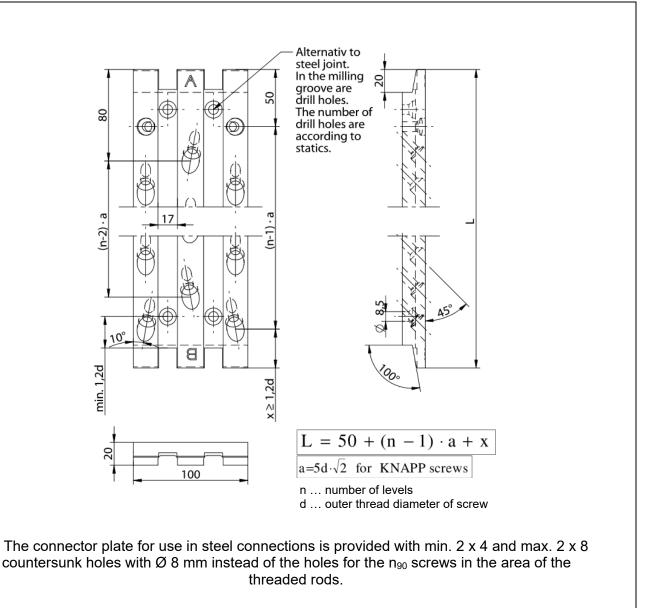
MEGANT® 100	Annex 2
Connector plate for <u>wood</u>	of European Technical Assessment
Type: <u>310x100x40</u>	ETA-15/0667 of 22.07.2019



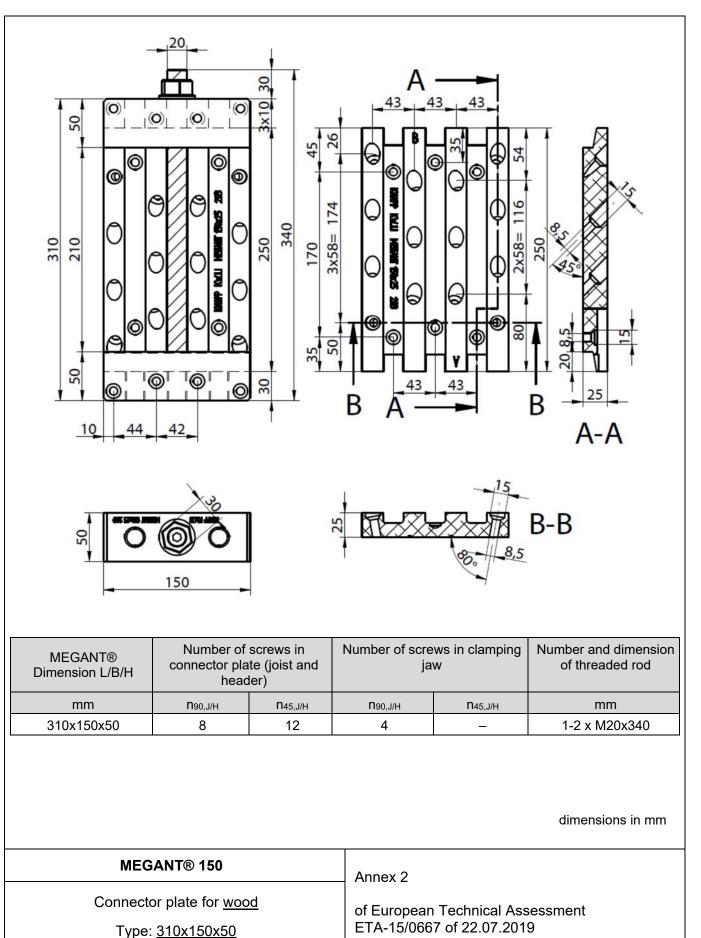
MEGANT® Dimension L/B/H	Number of screws in connector plate (joist and header)		Number of screws in clamping jaw	Number and dimension of threaded rod
mm	N 90,J/H	N 45,J/H	N 90,J/H	mm
430x100x40	6	15	2	2x M16x460

dimensions in mm

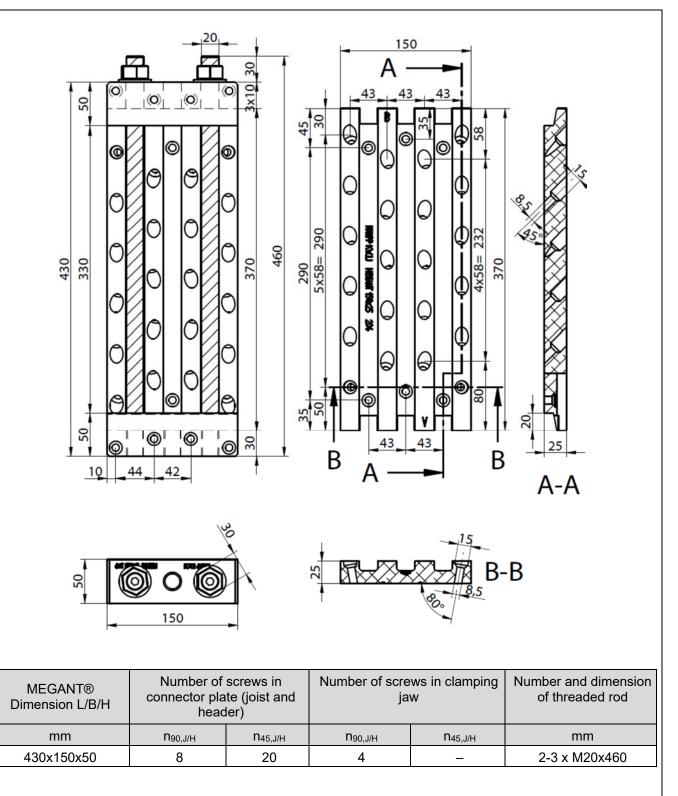

MEGANT® 100	Annex 2
Connector plate for <u>wood</u>	of European Technical Assessment
Type: <u>430x100x40</u>	ETA-15/0667 of 22.07.2019



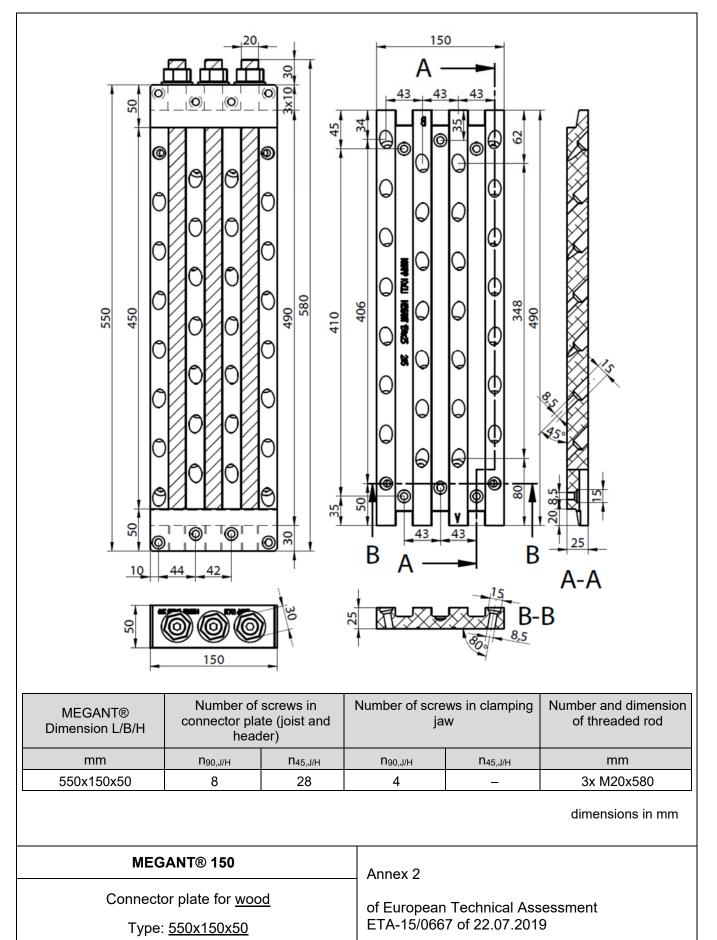
MEGANT® 100	Annex 2
Connector plate for <u>wood</u>	of European Technical Assessment ETA-15/0667 of 22.07.2019
Type: <u>550x100x40</u>	

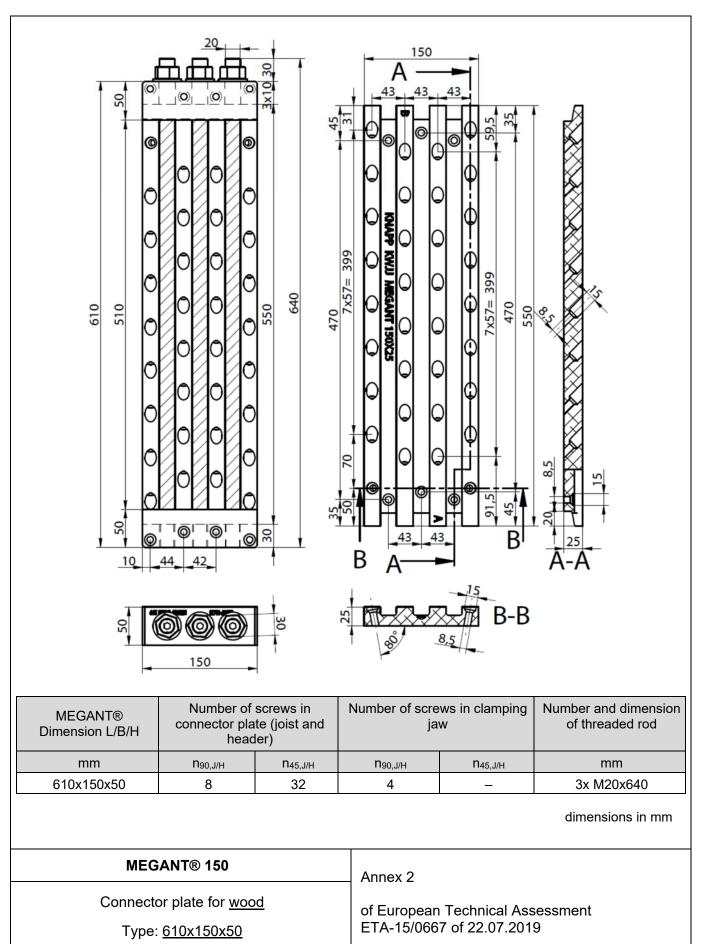


 MEGANT® 100
 Annex 2


 Connector plate for steel
 of European Technical Assessment

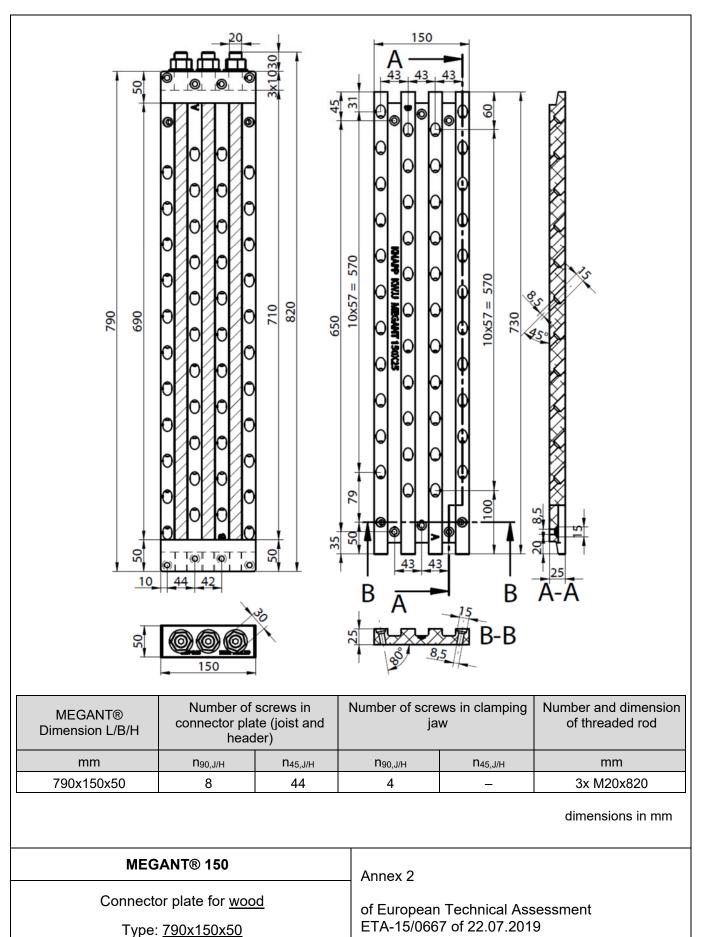
 Type: all
 ETA-15/0667 of 22.07.2019

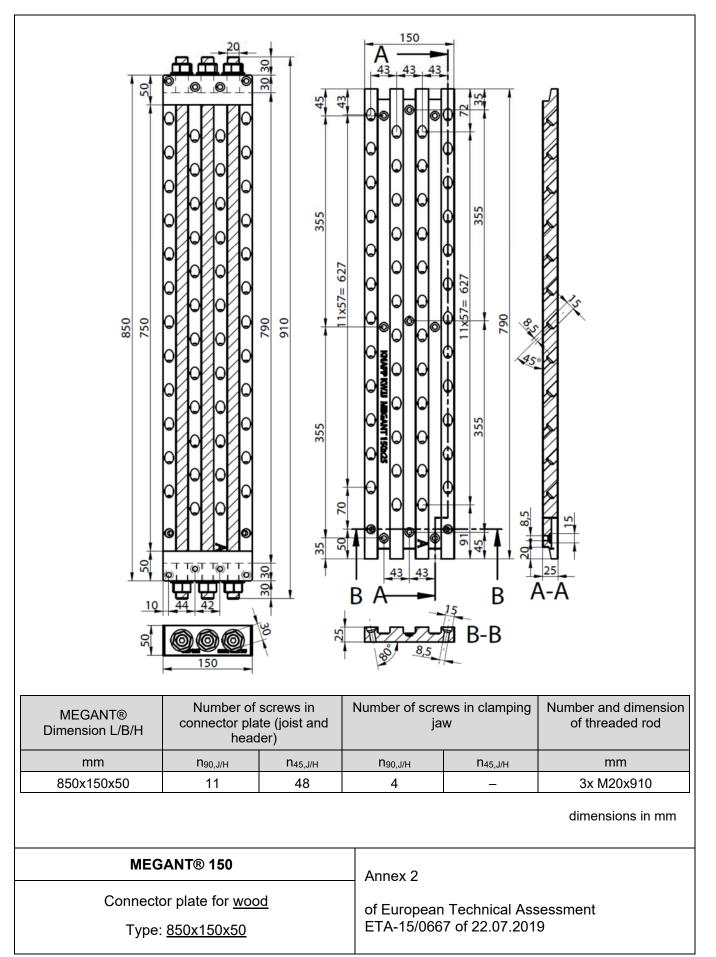


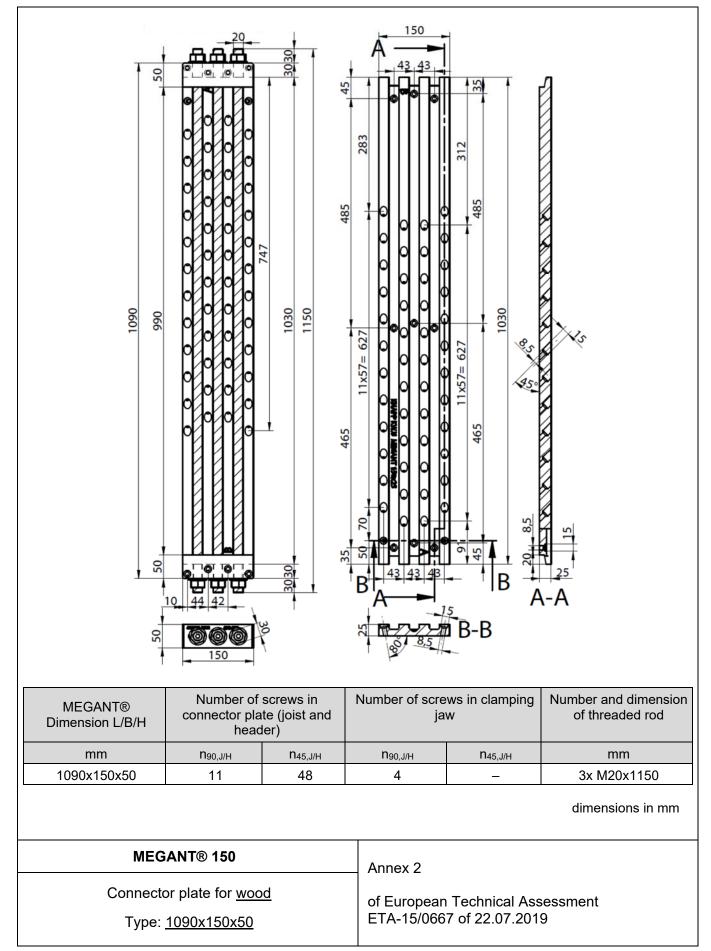

dimensions in mm

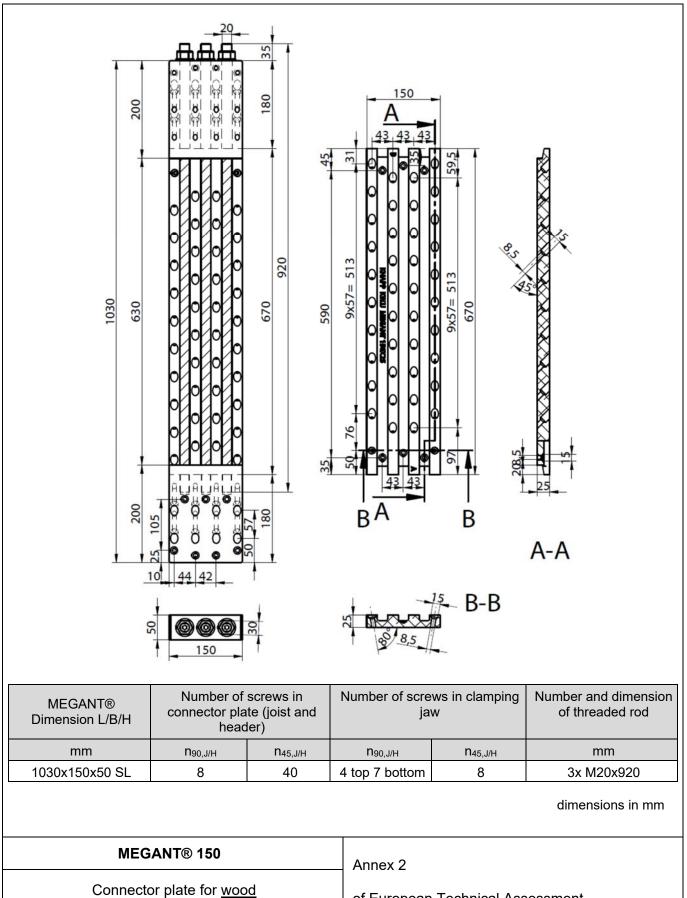
MEGANT® 150	Annex 2
Connector plate for <u>wood</u>	of European Technical Assessment
Type: <u>430x150x50</u>	ETA-15/0667 of 22.07.2019

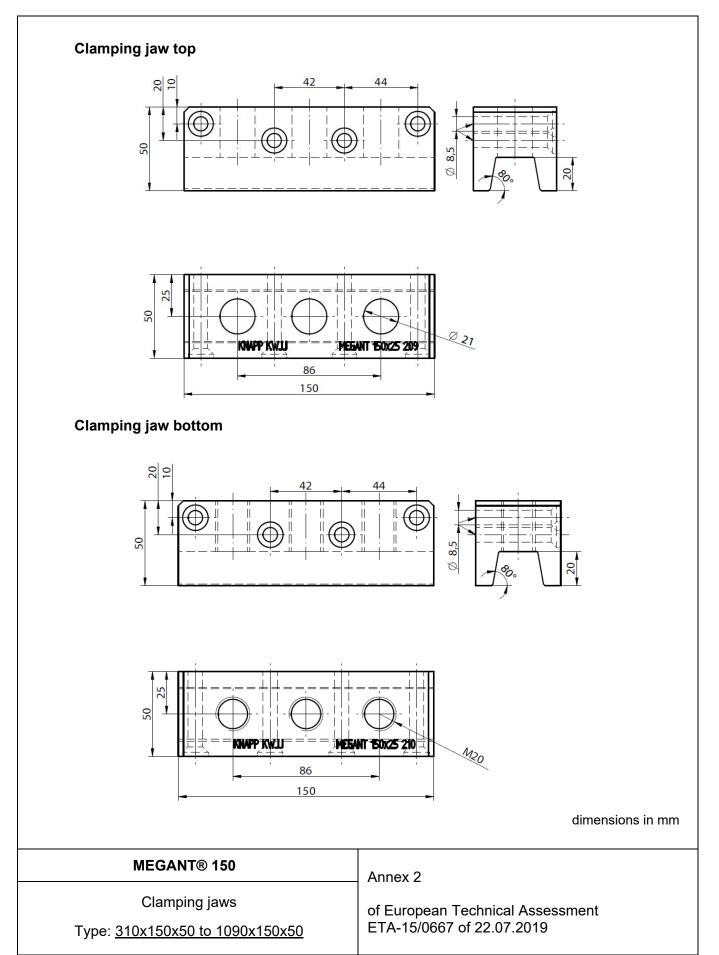


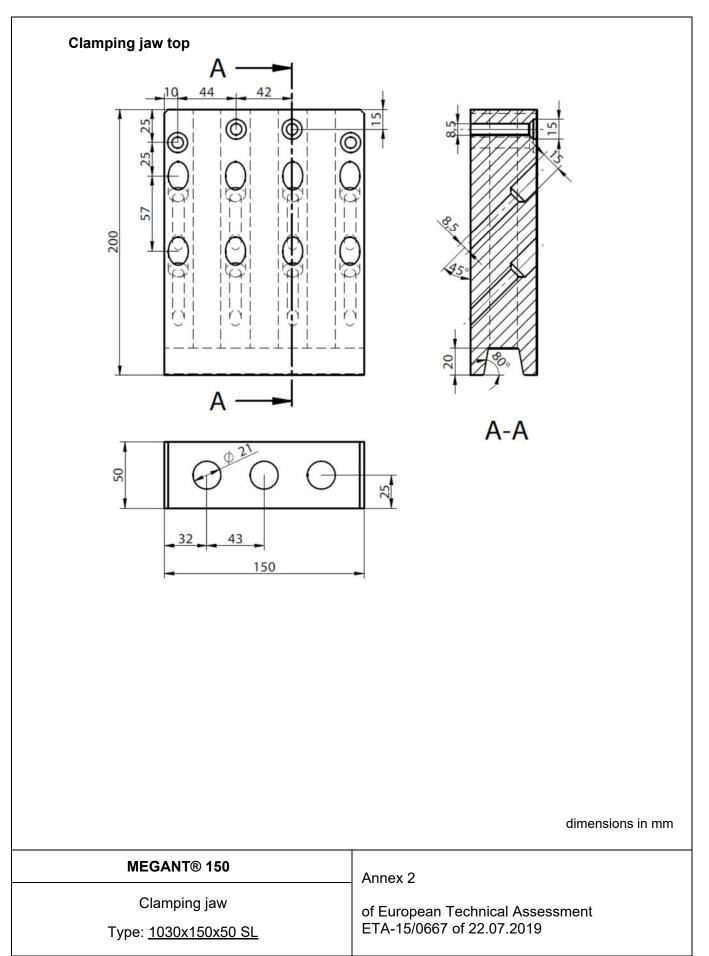


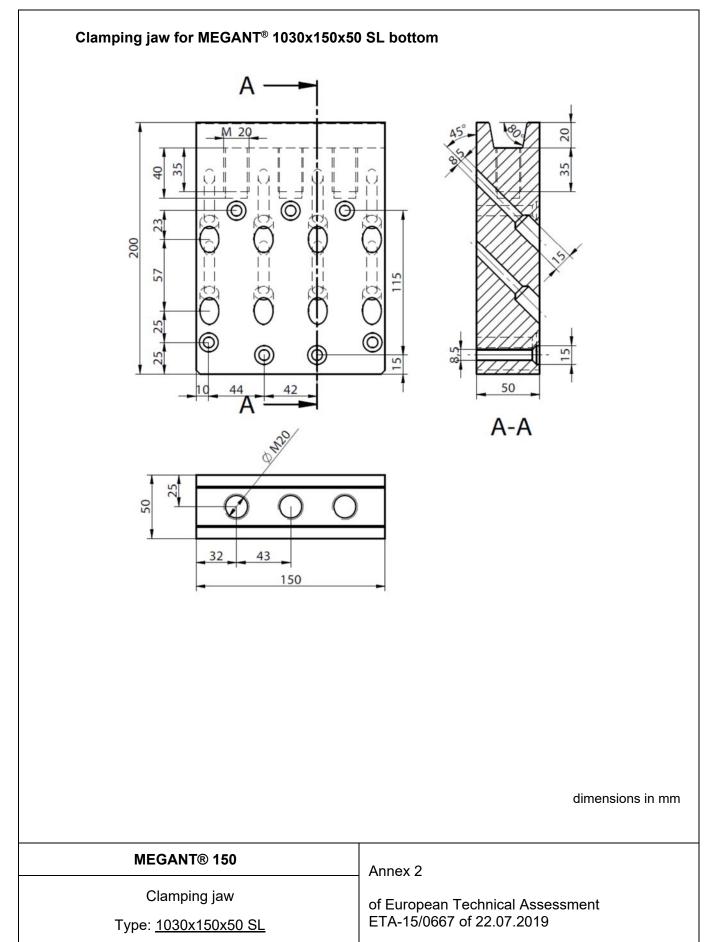


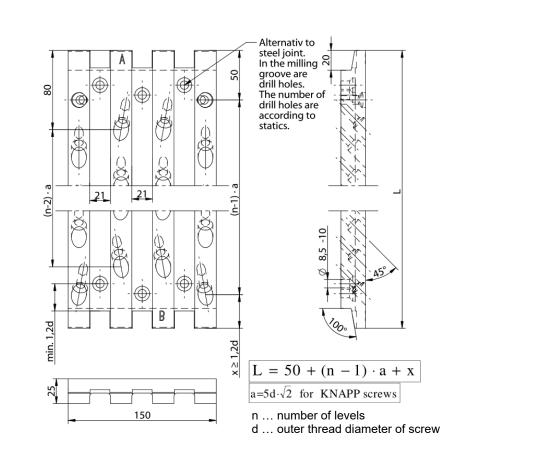







Type: 1030x150x50 SL





The connector plate for use in steel connections is provided with min. 3 x 2 and max. 3 x 6 countersunk holes with Ø 10 mm instead of the holes for the n_{90} screws in the area of the threaded rods.

	dimensions in mm
MEGANT® 150	Annex 2
Connector plate for <u>steel</u> Type: <u>all</u>	of European Technical Assessment ETA-15/0667 of 22.07.2019

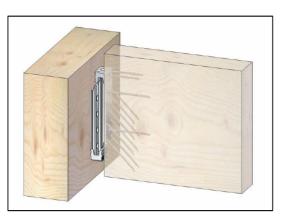
Header 1: positioning screws

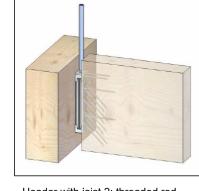
Header 3: bottom clamoping jaw

Header 2: 45° screws

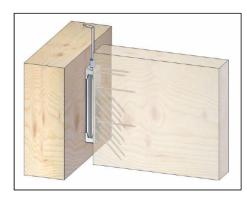
Header 4: finished

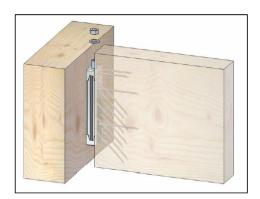
Joist 1: positioning screws

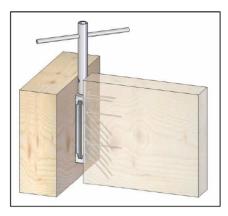

Joist 2: 45° screws

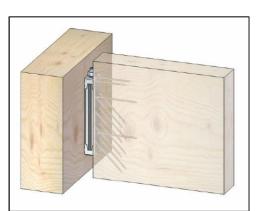

Joist 3: finished with top clamping jaw

MEGANT®	Annex 3
The typical installation of the connectors	of European Technical Assessment
Assembling from the top	ETA-15/0667 of 22.07.2019



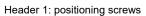

Header with joist 1: hang in joist


Header with joist 2: threaded rod


Header with joist 3: screw in threaded rod

Header with joist 4: washer and hex nut

Header with joist 5: tighten hex nut



Header with joist 6: connection finished

MEGANT®	Annex 3
The typical installation of the connectors	of European Technical Assessment
Assembling from the top	ETA-15/0667 of 22.07.2019

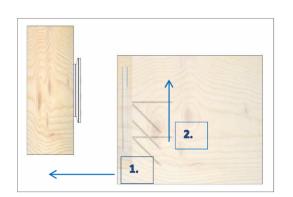
Header 2: 45° screws

Header 3: finished

Joist 1: bottom clamoping jaw in milling groove

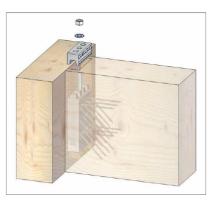
Joist 3: 45° screws

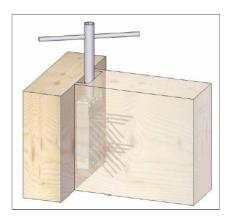
Joist 2: positioning screws



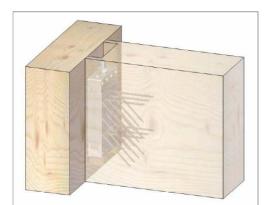
Joist 4: screw in threaded rod

MEGANT®	Annex 3	
The typical installation of the connectors	of European Technical Assessment	
Assembling from the bottom	ETA-15/0667 of 22.07.2019	





Header with joist 1: hang in joist


Header with joist 2: hang in joist from below

Header with joist 3: top clamping jaw, washer and hex nut


Header with joist 4: tighten hex nut

Header with joist 5: connection finished

MEGANT®	Annex 3
The typical installation of the connectors	of European Technical Assessment
Assembling from the bottom	ETA-15/0667 of 22.07.2019

Wooden structural components

Solid timber of softwood/hardwood of strength class C24/D24 or better according to EN 338 and EN 14081 1,

Glued laminated timber of strength class GL24c or better according to EN 14080

Glued laminated timber of hardwood according to European Technical Assessments or national standards and regulations in force at the place of use,

Laminated veneer lumber LVL according to EN 14374 or according to European Technical Assessments,

Solid wood members similar to glued laminated timber (typically e.g. Duo- and Triobalken) according to EN 14080 or national standards and regulations in force at the place of use,

Cross laminated timber according to European Technical Assessments or national standards and regulations in force at the place of use,

Strand lumber (e.g. Laminated Strand Lumber – Intrallam, Parallam) according to European Technical Assessments or national standards and regulations in force at the place of use.

The main beam (header) may also be of steel or concrete.

Forces and their directions

- F₁ Force acting in direction of the secondary beam. Connection of main beam or column and secondary beam.
- F₂ Force acting in direction of insertion. Connection of main beam or column and secondary beam. The member shall be prevented from rotation or eccentric loading, Annex 5, has to be considered.
- F₃ Force acting against direction of insertion. Connection of main beam or column and secondary beam. The member shall be prevented from rotation or eccentric loading, Annex 5, has to be considered.
- F₄₅ Force acting perpendicular to direction of insertion. Connection of main beam or column and secondary beam. The member shall be prevented from rotation or eccentric loading, Annex 5, has to be considered.
- M_{tor} Rotation moment. Connection of main beam or column and secondary beam.
- M₂ Moment caused by an eccentric force F₂ or F₃.

MEGANT®	Annex 4
Definition of forces and their directions	of European Technical Assessment ETA-15/0667 of 22.07.2019

MEGANT series 60 – Material: EN AW - 6082										
Characteristic load bearing capacity and stiffness irDimensionsSoftwood8 x 160 mm and horizontal screws 8 x 24								crews		
L/B/H	material	F _{1,KCC,Rk}	F _{1,Rk} F _{2,KCC,Rk}		F _{2,Rk}	F _{3,Rk}	F _{4KCC,Rk}	F _{4,Rk}	M _{tor,Rk}	K _{tor,ser}
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad
310x60x40	C24		18.9		89.7	27.6	36.9	32.0	2.5	200
310X00X40	GL24h		20.4		96.8	29.1	30.9	33.6	2.7	227
420,40,40	C24	26.6	18.9	150.4 ¹⁾	141	36.8	40.6	50.4	5.5	639
430x60x40	GL24h	36.6	20.4	130.1 · f _{R2} ²⁾	152	38.7	40.6	52.8	5.8	723
550x60x40	C24		18.9		192	45.9	44.3	68.7	9.6	1 569
550x00x40	GL24h		20.4		207	48.3	44.3	72.0	10.2	1 775

F _{1,KCC,RK} / F _{1,Rk}	Characteristic load bearing capacity (aluminium failure/wood failure) in direction of secondary beam
F _{2,KCC,RK} / F _{2,Rk}	Characteristic load bearing capacity (aluminium failure/wood failure) in direction of insertion
F _{3,Rk}	Characteristic load bearing capacity (wood failure) against direction of insertion
	Characteristic load bearing conscitu (aluminium failure/wood failure) perpendicular to

F_{4,KCC,RK} / F_{4,Rk} Characteristic load bearing capacity (aluminium failure/wood failure) perpendicular to direction of insertion

 M_{tor}

electronic copy

electronic copy

electronic copy

electronic copy

Characteristic rotation moment

	MEGANT series 100 – Material: EN AW - 6082										
Dimensions	Softwood	Cha			ng capacity and stiffness in softwood with screws Id horizontal screws 8 x 240 mm in joist						
L/B/H	material	F1,KCC,Rk	F _{1,Rk}	F2,KCC,Rk	F _{2,Rk}	F _{3,Rk}	F4KCC,Rk	F _{4,Rk}	Mtor,Rk	K _{tor,ser}	
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad	
240-400-40	C24		29.4		115	43.8	62.4	41.2	4.2	346	
310x100x40	GL24h		31.7		124	46.2	02.4	43.2	4.4	391	
430x100x40	C24	55.3	29.4	224.2 ¹⁾	192	57.5	69.6	68.7	8.6	1 066	
4308100840	GL24h	55.5	31.7	206.6 · f _{R2} ²⁾	207	60.6	68.6	72.0	9.2	1 206	
550x100x40	C24		29.4		269	71.2	74.9	96.1	14.9	2 443	
5507100740	GL24h		31.7		290	75.0	74.9	100.8	15.9	2 764	

 $^{1)}\,F_{2,KCC,Rk}$ for torsional fixed header

 $^{2)}\,F_{2,KCC,Rk}\cdot f_{R2}$ for not torsional fixed header and f_{R2} according to page 44

MEGANT®	Annex 5
Characteristic load-bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

MEGANT series 150 – Material: EN AW - 6082										
Dimensions	Softwood	Cha	Characteristic load bearing capacity and stiffness in softwood with screws 8 x 160 mm and horizontal screws 8 x 240 mm in joist							
L/B/H	material	F _{1,KCC,Rk}	$F_{1,Rk}$	F _{2,KCC,Rk}	$F_{2,Rk}$	F _{3,Rk}	F _{4KCC,Rk}	F _{4,Rk}	$M_{\text{tor},\text{Rk}}$	K _{tor,ser}
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rao
210,150,250	C24		39.8		145	58.4	68.0	54.9	3.9	304
310x150x50	GL24h		43.0		156	61.6	00.0	57.6	4.2	344
430x150x50	C24		39.8		241	76.7	74.0	91.6	12.5	1 594
4308130830	GL24h		43.0		260	80.8	74.8	96.0	13.3	1 803
	C24		39.8		337	95.0		128.2	20.9	3 488
550x150x50	GL24h		43.0		364	100.0		134.4	22.3	3 946
610,450,450	C24		39.8	275 O 1)	385	95.0		128.2	20.9	3 488
610x150x50	GL24h		43.0	375.0 ¹⁾	416	100.0		134.4	22.3	3 946
7201150150	C24	74.3	39.8	366.5 · f _{R2}	482	95.0		128.2	20.9	3 488
730x150x50	GL24h	74.5	43.0		520	100.0		134.4	22.3	3 946
700-450-50	C24		39.8		530	95.0	01.0	128.2	20.9	3 488
790x150x50	GL24h		43.0		572	100.0	81.6	134.4	22.3	3 946
950-450-50	C24		39.8		578	95.0]	128.2	20.9	3 488
850x150x50	GL24h		43.0		624	100.0	1	134.4	22.3	3 946
1000-450-50	C24		39.8		578	95.0	1	128.2	20.9	3 488
1090x150x50	GL24h		43.0	1	624	100.0]	134.4	22.3	3 946
1030x150x50	C24		39.8	650	559	95.0]	128.2	20.9	3 488
SL	GL24h		43.0	650	604	100.0]	134.4	22.3	3 946

For deviating densities $K_{tor,ser}$ and $M_{tor,Rk}$ for GL24h are adapted by the factor k_{dens}

$$k_{dens} = \left(\frac{\rho_k}{385}\right)^c$$

Where

 k_{dens} ... Factor to consider deviating densities

 ρ_k Characteristic density of timber in kg/m³

c = 0.8 from higher to lower density and

c = 0.6 from lower to higher density

MEGANT®	Annex 5	
Characteristic load-bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019	

Reduction factor f _{R2} for not fixed header								
MEGANT	Header width B_H	Eccentricity e ³⁾ e = $B_H/2 + H_{Megant}/2$	Reduction factor f _{R2}					
series 60	$\begin{array}{l} B_{H} \leq 140 \\ 140 \leq B_{H} \leq 320 \end{array}$	e ≤ 90 90 ≤ e ≤ 180	f _{R2} = 1.0 f _{R2} = (270-e)/180					
series 100	$\begin{array}{l} B_{H} \leq 140 \\ 140 \leq B_{H} \leq 360 \end{array}$	$e \le 90$ $90 \le e \le 200$	f _{R2} = 1.0 f _{R2} = (310-e)/220					
series 150	$\begin{array}{c} B_H \leq 200 \\ 200 \leq B_H \leq 450 \end{array}$	$e \le 125$ $125 \le e \le 250$	f _{R2} = 1.0 f _{R2} = (375-e)/250					

³⁾ For greater eccentricities, additional reinforcement is necessary.

MEGANT®	Annex 5
Characteristic load-bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

MEGANT series 60, 100, and 150 – Material: EN AW - 6082										
Megant series:	Softwood	Slip modulus in so	Slip modulus in softwood with screws 8 x 160 mm and horizontal screws 8 x 240 mm in joist							
dimension L	material	K _{1,ser}	K _{2,ser} ³⁾	K _{2,ser} ⁴⁾	K _{4,ser}					
mm	-	kN/mm	kN/mm	kN/mm	kN/mm					
series 60:	C24	6.7	36.9	30.3	6.1					
310, 430, 550	GL24h	7.2	39.8	32.7	6.6					
series 100:	C24	12.2	53.0	45.0	8.3					
310, 430, 550	GL24h	13.2	57.2	48.6	9.0					
series 150:	C24	19.5	81.7	67.5	12.1					
310, 430, 550-1090	GL24h	21.0	88.2	72.8	13.1					

For deviating densities K_{ser} for GL24h is adapted by the factor k_{dens}

$$k_{dens} = \left(\frac{\rho_k}{385}\right)^c$$

Where

 k_{dens} ...Factor to consider deviating densities

 ρ_k Characteristic density of timber in kg/m³

c = 0.8 from higher to lower density and

c = 0.6 from lower to higher density

 $^{3)}$ K $_{2,ser}$ for torsional fixed header $^{4)}$ K $_{2,ser}$ for not torsional fixed header

MEGANT®		Annex 5
Characteristic load bearing	g capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

MEGANT series 60 – Material: EN AW - 6082											
Dimensions	Bottom clamping jaw in	Torsion modulus and stiffness in softwood with horizontal screws 8 x 160 mm in header and horizontal screws 8 x 240 mm in joist									
L/B/H	joist		$M_{2,\phi,Rk}$			$K_{2,\phi,ser}$ ¹⁾					
			kNm			kNm/rad					
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h				
310x60x40	Top tension	1.7	1.8	2.0	530	555	582				
310200240	Bottom tension	2.5	2.7	2.8	366	404	466				
430x60x40	Top tension	2.4	2.6	2.8	1 081	1 202	1 350				
430x00x40	Bottom tension	4.2	4.5	4.8	1 037	1 048	1 064				
550x60x40	Top tension	3.2	3.4	3.7	1 981	2 106	2 237				
550x60x40	Bottom tension	5.9	6.3	6.8	2 303	2 350	2 390				
Dimensions	Bottom clamping jaw in	Torsion modulus and stiffness in softwood with horizontal screw 8 x 160 mm in header and horizontal screws 8 x 240 mm in jois									
L/B/H	header		M _{2, φ} , Rk		K _{2, \(\phi\)} , ser ¹⁾						
			kNm		kNm/rad						
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h				
210,40,40	Top tension	3.1	3.1	3.1	557	572	587				
310x60x40	Bottom tension	3.1	3.3	3.6	744	771	798				
420,400,40	Top tension	6.6	6.7	6.8	1 455	1 559	1 649				
430x60x40	Bottom tension	4.6	4.9	5.3	1 511	1 722	1 967				
EEOveov40	Top tension	8.7	9.4	10.2	2 495	2 699	2 970				
550x60x40	Bottom tension	6.1	6.6	7.1	2 739	2 929	3 127				

 $^{1)}\mathsf{K}_{2,\phi}$ for the calculation of member forces and moments in a structural system shall be calculated as:

$$K_{2,\varphi} = \frac{2 \cdot K_{2,\varphi,ser}}{3 \cdot (1 + 2 \cdot \psi_2 \cdot k_{def})}$$

Where

 ψ_2 combination factor according to EN 1990 for the quasi-permanent value of the action causing the largest stress in relation to the strength

 k_{def} ... deformation factor according to EN 1995-1-1

MEGANT®	Annex 5	
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019	

MEGANT series 100 – Material: EN AW - 6082											
Dimensions	Bottom clamping jaw in	Torsion m	odulus and s im in header	stiffness in s	oftwood w						
L/B/H	joist		$M_{2,\phi,Rk}$			$K_{2,\phi,ser}$ ¹⁾					
			kNm			kNm/rad					
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h				
310x100x40	Top tension	3.0	3.2	3.5	666	702	740				
310x100x40	Bottom tension	4.3	4.3	4.3	834	844	855				
430x100x40	Top tension	4.2	4.5	4.9	1 576	1 663	1 755				
4302100240	Bottom tension	7.9	8.3	8.8	1 577	1 693	1 883				
550x100x40	Top tension	5.5	5.9	6.4	2 950	3 128	3 321				
550x100x40	Bottom tension	11.4	12.1	12.9	3 364	3 420	3 497				
Dimensions	Bottom clamping jaw in	Torsion modulus and stiffness in softwood with horizontal screws 8 x 160 mm in header and horizontal screws 8 x 240 mm in joist									
L/B/H	header		M _{2, φ} , Rk		K _{2,φ,ser} ¹⁾						
			kNm		kNm/rad						
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h				
310x100x40	Top tension	4.6	4.6	4.6	867	882	897				
3 IUX IUUX4U	Bottom tension	5.4	5.9	6.1	817	855	898				
420×400×40	Top tension	8.4	9.1	9.9	2 187	2 271	2 352				
430x100x40	Bottom tension	8.2	8.9	9.6	1 988	2 085	2 197				
550x100x40	Top tension	11.1	12.0	13.0	4 251	4 550	4 823				
550X 100X40	Bottom tension	11.0	11.9	12.9	3 868	4 014	4 196				

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

MEGANT series 150 – Material: EN AW - 6082											
Dimensions L/B/H	Bottom clamping jaw in		odulus and and and and a								
L/D/N	joist		M _{2,φ} ,Rk			$K_{2,\phi,ser}$ ¹⁾					
			kNm			kNm/rad					
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h				
310x150x50	Top tension	4.9	5.3	5.7	1 054	1 132	1 230				
310x150x50	Bottom tension	5.9	6.0	6.0	966	1 022	1 073				
420,450,450	Top tension	7.0	7.6	8.3	2 495	2 629	2 770				
430x150x50	Bottom tension	11.3	11.9	12.4	2 330	2 460	2 645				
	Top tension	9.3	10.0	10.9	4 685	4 965	5 269				
550x150x50	Bottom tension	16.7	17.7	18.7	4 966	5 051	5 169				
610x150x50	Top tension	10.4	11.2	12.2	6 057	6 425	6 834				
010x150x50	Bottom tension	19.3	20.5	21.8	6 884	6 991	7 107				
720-450-50	Top tension	12.7	13.7	14.8	9 431	9 964	10 589				
730x150x50	Bottom tension	24.6	26.2	28.0	11 878	12 147	12 387				
700-450-50	Top tension	13.8	14.9	16.2	11 444	12 097	12 819				
790x150x50	Bottom tension	27.3	29.1	31.1	14 494	14 908	15 288				
050-450-50	Top tension	19.1	20.7	22.4	15 717	16 571	17 523				
850x150x50	Bottom tension	32.0	33.8	35.7	17 464	18 009	18 597				
1030x150x50	Top tension	17.1	18.5	20.1	14 193	14 785	15 477				
SL	Bottom tension	31.2	33.4	35.7	21 169	21 831	22 444				
4000-450-50	Top tension	24.6	26.6	28.8	23 322	24 659	26 170				
1090x150x50	Bottom tension	44.5	47.2	49.3	34 694	35 943	37 231				

MEGANT series 150 – Material: EN AW - 6082											
Dimensions	header										
L/B/H	neader		$M_{2,\phi,Rk}$		i .	$K_{2,\phi,ser}$ ¹⁾					
			kNm			kNm/rad					
mm	-	C24	GL24h	GL28h	C24	GL24h	GL28h				
240-450-50	Top tension	6.2	6.3	6.3	1 090	1 117	1 158				
310x150x50	Bottom tension	7.2	7.8	8.5	1 222	1 304	1 418				
420-450-50	Top tension	13.5	13.7	13.8	3 112	3 259	3 391				
430x150x50	Bottom tension	10.9	11.8	12.8	2 906	3 066	3 237				
	Top tension	19.2	20.8	22.5	5 777	6 284	6 793				
550x150x50	Bottom tension	14.6	15.8	17.1	5 507	5 790	6 128				
040-450-50	Top tension	21.6	23.4	25.3	7 255	7 882	8 634				
610x150x50	Bottom tension	16.5	17.8	19.3	7 235	7 556	7 956				
720-450-50	Top tension	26.5	28.6	31.0	11 292	11 863	12 681				
730x150x50	Bottom tension	20.2	21.8	23.7	11 482	12 004	12 590				
700-450-50	Top tension	28.9	31.2	33.8	14 009	14 544	15 294				
790x150x50	Bottom tension	22.1	23.9	25.8	14 049	14 678	15 389				
050-450-50	Top tension	35.0	37.9	41.0	17 865	18 395	19 099				
850x150x50	Bottom tension	28.1	30.4	32.9	18 195	18 945	19 802				
1030x150x50	Top tension	17.1	18.5	20.0	14 168	14 760	15 452				
SL	Bottom tension	26.2	28.4	30.7	23 710	24 690	25 760				
1000-450-50	Top tension	45.7	49.4	53.5	34 776	36 091	37 536				
1090x150x50	Bottom tension	37.0	40.0	43.3	34 452	35 830	37 306				

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

MEGANT series 60 – Material: EN AW - 6082												
Dimensions	Hardwood	Chara	Characteristic load bearing capacity and stiffness in hardwood with screws 8 x 120 mm									
L/B/H	material	F _{1,KCC,Rk}	F _{1,Rk}	F _{2,KCC,Rk}	$F_{2,Rk}$	F _{3,Rk}	F _{4KCC,Rk}	F _{4,Rk}	M _{tor,Rk}	K _{tor,ser}		
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad		
310x60x40	ρ _k = 530 kg/m³		40.1		123	46.8	36.9	49.2	3.5	374		
310X00X40	ρ_k = 590 kg/m ³		47.6	150.4 ¹⁾	146	50.5		54.3	3.9	439		
420,400,40	ρ_k = 530 kg/m ³	36.6	40.1	150.4 17	193	61.5	40.6	77.3	7.5	1 241		
430x60x40	ρ_k = 590 kg/m ³	30.0	47.6	130.1 · f _{R2}	229	66.0	40.6	85.4	8.5	1 457		
EE0x60x40	ρ _k = 530 kg/m³		40.1	_/	263	76.3	44.2	105.3	13.2	2 924		
550x60x40	ρ _k = 590 kg/m³		47.6	1	312	81.5	44.3	116.5	14.9	3 434		

F1,KCC,RK / F1,Rk Characteristic load bearing capacity (aluminium failure/wood failure) in direction of secondary beam Characteristic load bearing capacity (aluminium failure/wood failure) in direction of insertion F_{2,KCC,RK} / F_{2,Rk} Characteristic load bearing capacity (wood failure) against direction of insertion F_{3,Rk} F4,KCC,RK / F4,Rk Characteristic load bearing capacity (aluminium failure/wood failure) perpendicular to

direction of insertion Mtor

Characteristic rotation moment

	MEGANT series 100 – Material: EN AW - 6082												
Dimensions	Hardwood	Chara	Characteristic load bearing capacity and stiffness in hardwood with screws 8 x 120 mm										
L/B/H	material	F1,KCC,Rk	F _{1,Rk}	F _{2,KCC,Rk}	F _{2,Rk}	F _{3,Rk}	F4KCC,Rk	F _{4,Rk}	Mtor,Rk	K _{tor,ser}			
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/rad			
310x100x40	ρ _k = 530 kg/m³		62.5		158	75.3	62.4	63.2	5.7	644			
310X100X40	ρ _k = 590 kg/m³		74.2	224.2 ¹⁾	187	187 81.5	02.4	69.9	6.4	757			
430x100x40	ρ _k = 530 kg/m³	55.3	62.5	224.2 7	263	97.3	68.6	105.3	11.9	1 986			
430X100X40	ρ _k = 590 kg/m³	55.5	74.2	206.6 · f _{R2}	312	104.8	00.0	116.5	13.3	2 333			
550x100x40	ρ _k = 530 kg/m³		62.5		368	119.4	74.9	147.5	20.5	4 553			
550X 100X40	ρ _k = 590 kg/m³		74.2		437	128.1	74.9	163.0	23.0	5 348			

¹⁾ $F_{2,KCC,Rk}$ for torsional fixed header

 $^{2)}\,F_{2,KCC,Rk}\cdot f_{R2}$ for not torsional fixed header and f_{R2} according to page 44

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

		MEGAN	T series	5 150 – Mate	erial: El	N AW - 6	6082				
Dimensions	Hardwood	Chara	Characteristic load bearing capacity and stiffness in hardwood with screws $8 ext{ x 120 mm}$								
L/B/H	material	F _{1,KCC,Rk}	F _{1,Rk}	F _{2,KCC,Rk}	$F_{2,Rk}$	F _{3,Rk}	F _{4KCC,Rk}	F _{4,Rk}	M _{tor,Rk}	K _{tor,se}	
mm	-	kN	kN	kN	kN	kN	kN	kN	kNm	kNm/r d	
310x150x50	ρ _k = 530 kg/m³	8	84.7		191	100.3	68.0	84.3	5.4	567	
3102120220	ρ _k = 590 kg/m³		100.5		227	108.7	00.0	93.2	6.1	666	
430x150x50	ρ _k = 530 kg/m³	-	84.7		319	129.8	74.8	140.5	17.1	2 970	
4308130830	ρ_k = 590 kg/m ³		100.5		378	139.8	74.0	155.3	19.2	3 489	
550x150x50	ρ _k = 530 kg/m³		84.7	375.0 ¹⁾	446	159.2		196.7	28.7	6 500	
550% 150%50	ρ _k = 590 kg/m³		100.5		530	170.8		217.4	32.3	7 634	
610x150x50	ρ _k = 530 kg/m³		84.7		510	159.2		196.7	28.7	6 500	
0102150250	ρ_k = 590 kg/m ³		100.5		605	170.8		217.4	32.3	7 634	
730x150x50	ρ_k = 530 kg/m ³	74.3		366.5 · f _{R2}	637	159.2		196.7	28.7	6 500	
7308130830	ρ _k = 590 kg/m³	74.5	100.5	_,	757	170.8		217.4	32.3	7 634	
790x150x50	ρ_k = 530 kg/m ³		84.7		701	159.2	81.6	196.7	28.7	6 500	
1907190790	ρ _k = 590 kg/m³		100.5		832	170.8	01.0	217.4	32.3	7 634	
850x150x50	$\rho_{\rm k}$ = 530 kg/m ³		84.7		765	159.2		196.7	28.7	6 500	
0000100000	ρ _k = 590 kg/m³		100.5		908	170.8		217.4	32.3	7 634	
1090x150x50	ρ _k = 530 kg/m³		84.7 100.5		765	159.2		196.7	28.7	6 500	
10907190290	ρ_k = 590 kg/m ³				908	170.8		217.4	32.3	7 634	
1030x150x50	ρ _k = 530 kg/m³		84.7	650	727	159.2		196.7	28.7	6 500	
SL	ρ _k = 590 kg/m³		100.5	050	863	170.8		217.4	32.3	7 634	

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

Γ

MEGANT series 60, 100, and 150 – Material: EN AW - 6082									
Megant series: dimension L	Hardwoodmat	Slip mo	Slip modulus in hardwood with screws 8 x 120 mm						
	erial	K _{1,ser}	K _{2,ser} ³⁾	K _{2,ser} ⁴⁾	K _{4,ser}				
mm	-	kN/mm	kN/mm	kN/mm	kN/mm				
series 60:	ρ_k = 530 kg/m ³	9.4	51.9	42.7	8.6				
310, 430, 550	ρ_k = 590 kg/m ³	10.2	56.6	46.5	9.4				
series 100:	ρ_k = 530 kg/m ³	17.2	74.6	63.4	11.7				
310, 430, 550	ρ_k = 590 kg/m ³	18.8	81.3	69.1	12.8				
series 150:	ρ_k = 530 kg/m ³	27.4	115.1	95.0	17.1				
310, 430, 550-1090	ρ_k = 590 kg/m ³	29.9	125.4	103.5	18.6				

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

MEGANT series 60 – Material: EN AW - 6082							
Dimensions L/B/H	Bottom clamping	Torsion	modulus aı	nd stiffness in h 8 x 120		vith horizo	ntal screws
L/B/H	jaw in joist		$M_{2,\phi,Rk}$			$K_{2,\phi,ser}$ ¹)
			kNm			kNm/rac	t
mm	-	D30	D50	BauBuche ²⁾	D30	D50	BauBuche ²⁾
310x60x40	Top tension	3.5	4.2	2.8	920	1 089	798
310x60x40	Bottom tension	3.8	4.5	3.9	684	801	610
430x60x40	Top tension	5.1	6.1	3.9	2 102	2 489	1 754
430x60x40	Bottom tension	6.1	7.2	6.2	2 087	2 454	1 883
550x60x40	Top tension	6.8	8.1	5.1	3 818	4 519	3 164
550x60x40	Bottom tension	8.4	9.9	8.6	4 302	5 073	3 929
Dimensions	Bottom clamping	Torsion	modulus aı	nd stiffness in h 8 x 120		vith horizoi	ntal screws
L/B/H	jaw in header	M _{2,φ,Rk}			K _{2,φ,ser} ¹⁾		
			kNm			kNm/rac	ł
mm	-	D30	D50	BauBuche ²⁾	D30	D50	BauBuche ²⁾
310x60x40	Top tension	6.1	7.2	5.8	941	1 117	904
310x60x40	Bottom tension	6.3	7.5	4.9	1 160	1 371	1 086
430x60x40	Top tension	11.1	13.1	9.5	2 220	2 614	2 023
430X00X40	Bottom tension	9.5	11.4	7.3	2 657	3 141	2 340
550x60x40	Top tension	16.0	18.9	12.5	4 726	5 549	4 070
550200240	Bottom tension	12.8	15.2	9.7	5 060	5 960	4 295

 $^{1)}$ K_{2, ϕ} for the ultimate limit state shall be calculated as:

$$K_{2,\varphi} = \frac{2 \cdot K_{2,\varphi,ser}}{3 \cdot (1 + 2 \cdot \psi_2 \cdot k_{def})}$$

Where

 ψ_2 combination factor according to EN 1990 for the quasi-permanent value of the action causing the largest stress in relation to the strength

 k_{def} ... deformation factor according to EN 1995-1-1

²⁾ for Träger BauBuche according to ETA-14/0354 in service class 1

MEGANT®	Annex 5	
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019	

MEGANT series 100 – Material: EN AW - 6082							
Dimensions	Bottom clamping	Torsion modulus and stiffness in hardwood with horizontal screws 8 x 120 mm					
L/B/H	jaw in joist		$M_{2,\phi,Rk}$			$K_{2,\phi,ser}$ ¹)
			kNm			kNm/ra	t
mm	-	D30	D50	BauBuche ²⁾	D30	D50	BauBuche ²⁾
310x100x40	Top tension	5.3	6.3	4.2	1 192	1 406	962
3102100240	Bottom tension	7.2	8.5	6.8	1 003	1 185	1 074
430x100x40	Top tension	7.5	8.9	5.7	2 858	3 370	2 249
430X100X40	Bottom tension	11.9	14.1	11.7	3 107	3 644	2 457
550x100x40	Top tension	9.8	11.7	7.4	5 429	6 409	4 208
000X100X40	Bottom tension	16.7	19.8	16.6	6 847	8 052	5 502
Dimensions	Bottom clamping	Torsion	modulus aı	nd stiffness in h 8 x 120		vith horizo	ntal screws
L/B/H	jaw in header	M _{2,φ,Rk}			K _{2,φ,ser} ¹⁾		
			kNm		kNm/rad		
mm	-	D30	D50	BauBuche ²⁾	D30	D50	BauBuche ²⁾
210×100×10	Top tension	9.1	10.7	7.5	1 449	1 709	1 211
310x100x40	Bottom tension	9.8	11.5	8.0	1 502	1 765	1 213
420-400-40	Top tension	15.9	18.9	12.2	3 534	4 198	3 291
430x100x40	Bottom tension	15.8	18.8	12.1	4 013	4 713	3 078
EE0v100v40	Top tension	21.1	25.1	16.0	6 646	7 834	5 897
550x100x40	Bottom tension	21.4	25.4	16.2	7 839	9 229	6 171

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

	MEGANT series 150 – Material: EN AW - 6082						
Dimensions L/B/H	Bottom clamping jaw in joist	Torsion	modulus a	nd stiffness in h 8 x 120		with horizo	ntal screws
L/D/H	jaw in joist		$M_{2,\phi,Rk}$			$K_{2,\phi,ser}$ ¹)
			kNm			kNm/ra	ł
mm	-	D30	D50	BauBuche ²⁾	D30	D50	BauBuche ²⁾
240-450-50	Top tension	10.1	12.0	8.0	1 943	2 291	1 537
310x150x50	Bottom tension	10.2	12.1	8.8	1 502	1 768	1 370
420-450-450	Top tension	14.8	17.6	11.4	4 799	5 658	3 704
430x150x50	Bottom tension	17.4	20.6	16.5	4 614	5 411	3 426
550x150x50	Top tension	19.7	23.4	14.9	9 109	10 748	7 042
5502150250	Bottom tension	24.6	29.2	23.9	10 071	11 842	7 507
040-450-50	Top tension	22.2	26.3	16.7	11 882	14 021	9 174
610x150x50	Bottom tension	28.2	33.4	27.6	13 650	16 070	10 380
720-450-60	Top tension	27.1	32.2	20.3	18 761	22 139	14 381
730x150x50	Bottom tension	35.3	41.9	35.1	22 474	26 505	17 722
700-450-50	Top tension	29.6	35.1	22.2	22 897	27 022	17 468
790x150x50	Bottom tension	38.9	46.1	38.8	27 022	31 894	21 573
050-450-50	Top tension	40.7	48.4	30.8	31 218	36 848	23 864
850x150x50	Bottom tension	48.5	57.4	46.2	33 215	39 126	25 995
1020-150-50 01	Top tension	36.5	43.4	27.6	29 555	34 875	22 084
1030x150x50 SL	Bottom tension	44.9	53.1	44.3	37 146	43 895	31 296
1000-450-50	Top tension	52.6	62.5	39.5	21 609	25 598	43 118
1090x150x50	Bottom tension	65.7	77.8	63.8	63 939	75 447	51 329

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

	MEGANT series 150 – Material: EN AW - 6082						
Dimensions L/B/H	Bottom clamping jaw in header	Torsion	modulus a	nd stiffness in ł 8 x 120		with horizo	ntal screws
L/D/II	jaw in neader		$M_{2,\phi,Rk}$			$K_{2,\phi,ser}$ ¹)
20.00			kNm			kNm/ra	d
mm	-	D30	D50	BauBuche ²⁾	D30	D50	BauBuche ²⁾
210-450-50	Top tension	12.4	14.5	9.5	1 964	2 322	1 618
310x150x50	Bottom tension	14.6	17.4	11.5	2 177	2 561	1 728
430x150x50	Top tension	24.2	28.6	20.4	4 712	5 579	4 459
4302150250	Bottom tension	22.4	26.6	17.2	5 493	6 468	4 226
550x150x50	Top tension	35.5	42.3	27.0	9 526	11 200	8 002
5508150850	Bottom tension	30.2	35.9	22.9	10 622	12 509	8 173
610x150x50	Top tension	40.1	47.7	30.4	13 027	15 306	10 216
0102150250	Bottom tension	34.1	40.6	25.8	13 989	16 475	10 712
730x150x50	Top tension	49.3	58.6	37.2	22 153	26 052	16 475
7302150250	Bottom tension	42.0	49.9	31.6	22 457	26 457	17 040
790x150x50	Top tension	53.9	64.1	40.5	27 733	32 639	20 592
7902150250	Bottom tension	45.9	54.6	34.5	27 589	32 512	20 875
950x150x50	Top tension	66.1	78.6	50.2	33 981	40 006	26 215
850x150x50	Bottom tension	58.3	69.3	44.2	35 042	41 307	27 032
1030x150x50 SL	Top tension	36.3	43.2	27.4	29 463	34 768	22 010
1030X 130X30 SL	Bottom tension	55.5	66.0	41.8	48 860	57 711	37 174
1000×150×50	Top tension	86.7	103.0	65.3	66 338	78 198	50 983
1090x150x50	Bottom tension	77.0	91.5	58.0	66 022	77 878	50 939

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

1.) Calculation of characteristic load bearing capacities for connections between main beam or column and secondary beam

(a) $F_{1,Rk}$ – force acting in the direction of the secondary beam:

$F_{1,Rk} = min \cdot$	$\int F_{1,J,Rk}$	see (i)
$F_{i,n} - min$	$F_{1,H,Rk}$	see (i)
$I_{1,Rk} = IIIII$	$F_{t,Rk}$	see (ii)
	$(F_{1,KCC,Rk})$	see (iii)

(i) Load bearing capacity of tension screws in softwood and hardwood for Joist/Header $F_{1,J/H,Rk}$:

Characteristic withdrawal resistance in softwood:	$F_{1,J/H,Rk} = n_{ef,J/H} \cdot f_{ax,J/H,Rk} \cdot d \cdot l_{ef,J/H} \cdot k_{ax}$
Characteristic withdrawal resistance in hardwood ($\rho_k \le 590$ kg/m ³):	$F_{1,J/H,Rk} = n_{ef,J/H} \cdot 2 \cdot 10^{-3} \cdot l_{ef,J/H} \cdot d^{0.66} \cdot \rho_k^{1.6} \cdot k_{\alpha}$
Characteristic withdrawal resistance in Träger BauBuche according to ETA-14/0354:	$F_{1,J,Rk} = n_{ef,J} \cdot 11.7 \cdot d \cdot l_{ef,J}$ $F_{1,H,Rk} = n_{ef,H} \cdot 23.3 \cdot d \cdot l_{ef,H}$
with	
Characteristic withdrawal strength perpendicular to direction of grain:	$f_{ax,45,J/H,Rk} = 0.52 \cdot d^{-0.5} \cdot l_{ef,J/H}^{-0.1} \cdot \rho_k^{0.8}$
Number of screws acting in direction of force:	EN AW – 6082: series 60: $n_{ef,J/H} = 3.00$ series 100: $n_{ef,J/H} = 4.67$ series 150: $n_{ef,J/H} = 6.33$
Effective length of threaded part in the timber member:	$\begin{split} l_{ef,J/H} &= l_{Scr,J/H} - 14 \ mm \\ 80 \ mm &\leq l_{scr} \leq 240 \ mm \end{split}$
Angle between screw axis and direction of grain:	$\alpha = 0^{\circ}$ for Joist (end grain) $\alpha = 90^{\circ}$ for Header (side grain)
Dimension coefficient	$\begin{aligned} k_{ax} &= 0.3 + 0.7 \cdot \frac{\alpha}{45} \text{ for } 0^{\circ} \leq \alpha \leq 45^{\circ} \\ k_{ax} &= 1.0 \text{ for for } 45^{\circ} \leq \alpha \leq 90^{\circ} \end{aligned}$
Coefficient	$k_{lpha} = 0.7$ for Joist $k_{lpha} = 1.0$ for Header
For calculation of design values	k_{mod} according to EN 1995-1-1 and $\gamma_m = 1.3$

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

(ii) Tensile strength of horizontal screws $F_{t,Rk}$:

Characteristic tensile resistance:	$F_{t,Rk} = n_{90} \cdot f_{tens}$
with	
Tensile strength of the screw:	$f_{tens} = 20 \ kN$ according to Annex 1
For calculation of design values	$\gamma_{m,2} = 1.25$ (EN 1993-1-1)

(iii) Maximum load bearing capacity of connector MEGANT:

Maximum load bearing capacity:	$F_{1,KCC,Rk}$ according to Annex 5
For calculation of design values	$\gamma_{m,2} = 1.25$ (EN 1999-1-1)

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

(b) $F_{2,Rk}$ – force acting in direction of insertion:

	$F_{2,J,Rk}$	see (i)
	$F_{2,H,Rk}$	see (i)
$F_{2,Rk} = min$	$F_{2,KCC,Rk}$	see (ii)
)	$F{t.Rk}$	see (iii)
	$\begin{bmatrix} F_{t,Rk} \\ F_{\tau,Rk} \end{bmatrix}$	see (iv)

(i) Load bearing capacity of 45° screws in softwood and hardwood for Joist/Header $F_{2,J/H,Rk}$:

Characteristic load bearing capacity of 45° screws:	$F_{2,J/H,Rk} = \frac{1.25 \cdot n_{45,J/H} \cdot F_{ax,45,J/H,Rk}}{\sqrt{2}}$ for $e_2 < e_{2,lim}$
with	
Characteristic withdrawal strength for a single screw in softwood:	$F_{ax,45,J/H,Rk} = 0.52 \cdot d^{0.5} \cdot l_{ef,J/H}^{0.9} \cdot \rho_k^{0.8}$
Characteristic withdrawal strength for a single screw in hardwood $(\rho_k \le 590 \text{kg/m}^3)$:	$F_{ax,45,J/H,Rk} = 2 \cdot 10^{-3} \cdot l_{ef,J/H} \cdot d^{0.66} \cdot \rho_k^{1.6}$
Characteristic withdrawal strength in Träger BauBuche according to ETA-14/0354:	$F_{ax,45,J/H,Rk} = 28 \cdot d \cdot l_{ef,J/H}$
Limit value for the eccentricity	$e_{2,lim} = \frac{0.8 \cdot \sum z^2}{n_{45,J/H}} \cdot z_{max}$
Number of 45° screws in Joist/Header:	$n_{45,J/H}$ according to Annex 2
Effective length of threaded part in the timber member:	$\begin{array}{l} l_{ef,J/H} = l_{Scr,J/H} - 10 \ mm \ \text{for Megant series 60/100} \\ l_{ef,J/H} = l_{Scr,J/H} - 20 \ mm \ \text{for Megant series 150} \\ l_{ef,J/H} = l_{Scr,J/H} - 50 \ mm \ \text{for the screws in the} \\ \text{clamping jaw of MEGANT 1030x150x50 SL} \\ 80 \ mm \leq l_{scr} \leq 240 \ mm \end{array}$
Sum of squares of the individual distances from the centre of rotation of the joint, see (1)(e), of the inclined screws in the joist or header connection	
Distance of the outermost inclined screw from the center of rotation of the joint	
For calculation of design values	k_{mod} according to EN 1995-1-1 and $\gamma_m = 1.3$

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

(ii) Maximum load bearing capacity of connector MEGANT:

Maximum load bearing capacity:	$F_{2,KCC,Rk}$ according to Annex 5
For calculation of design values	$\gamma_{m,1} = 1.1$ (EN 1999-1-1)

(iii) Tensile strength of threaded rods $F_{t,Rk}$:

Tensile strength of threaded rods:	$F_{t,Rk} = n \cdot k_2 \cdot f_{u,b} \cdot A_s$
with	
Number of threaded rods:	n according to Annex 2
Characteristic tensile strength of threaded rod:	$f_{u,b}$
Cross section of core of threaded rod:	$A_s = 157 \ mm^2$ for rod diameter 16 mm $A_s = 245 \ mm^2$ for rod diameter 20 mm
Factor	$k_2 = 0.9$
For calculation of design values	$\gamma_{m,2} = 1.25$ (EN 1993-1-1)

(iv) Embedding strength of thread in aluminium $F_{\tau,Rk}$:

Embedding strength of thread in aluminium:	$F_{\tau,Rk} = R_{p0.2,k} \cdot A_M \cdot \beta_M$
with	
0,2 % yield strength	$R_{p0.2,k} = f_0 = 240 N/mm^2$ for EN AW – 6082
Cross section of thread:	$A_M = n \cdot d_B \cdot t \cdot \pi$

Number of threaded rods:	n according to Annex 2
Diameter of thread:	d_B according to Annex 2
Length of thread in aluminium:	t according to Annex 2
Reduction factor:	$\beta_M = 0.4$
For calculation of design values	$\gamma_{m,1} = 1.1$ (EN 1999-1-1)

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

(c)	F _{3 Rk} – force ac	ting against dire	ection of insertion:
(-)	. J,IK	agamet and	

$$F_{3,Rk} = min \begin{cases} F_{3,J,Rk} \\ F_{3,H,Rk} \end{cases}$$

Characteristic load bearing against direction of insertion for Joist/Header:	$F_{3,J/H,Rk} = n_{45,J/H} \cdot F_{v,45,J/H,Rk} + n_{\alpha,J/H} \cdot F_{v,\alpha,J/H,Rk}$
with	
Load bearing capacity per joint and fastener:	$F_{\nu,\alpha,J/H,Rk} = 2.3 \cdot \sqrt{M_{\nu,Rk} \cdot f_{h,J/H,k} \cdot d} + \frac{F_{ax,\alpha,J/H,Rk}}{4}$
	$F_{v,45,J/H,Rk} = 2.3 \cdot \sqrt{M_{y,Rk} \cdot f_{h,J/H,k} \cdot d}$
Characteristic withdrawal strength for a single screw in softwood:	$F_{ax,\propto,J/H,Rk} = 0.52 \cdot d^{0.5} \cdot l_{ef,J/H}^{0.9} \cdot \rho_k^{0.8} \cdot k_{ax}$
Characteristic withdrawal strength for a single screw in hardwood:	$F_{ax,\alpha,J/H,Rk} = 2 \cdot 10^{-3} \cdot l_{ef,J/H} \cdot d^{0.66} \cdot \rho_k^{1.6} \cdot k_{\alpha}$
Characteristic withdrawal strength for a single screw in Träger BauBuche according to ETA-14/0354:	$F_{ax,\alpha,J,Rk} = 11.7 \cdot d \cdot l_{ef,J}$ $F_{ax,\alpha,H,Rk} = 23.3 \cdot d \cdot l_{ef,H}$
Dimension coefficient	$\begin{aligned} k_{ax} &= 0.3 + 0.7 \cdot \frac{\alpha}{45} \text{ for } 0^{\circ} \le \alpha \le 45^{\circ} \\ k_{ax} &= 1.0 \text{ for for } 45^{\circ} \le \alpha \le 90^{\circ} \end{aligned}$
Coefficient:	$k_{lpha} = 0.7$ for Joist $k_{lpha} = 1.0$ for Header
Characteristic yield moment of the screw:	$M_{y,Rk}$ according to Annex 1
Number of screws in Joist/Header:	$n_{45,J/H}$ and $n_{\alpha,J/H}$ according to Annex 2 series 150: $n_{45,J/H,max} = 28$ and $n_{\alpha,J/H,max} = 8$
Effective length of threaded part in the timber member:	$\begin{split} l_{ef,J/H} &= l_{scr,J/H} - 14 \ mm \\ 80 \ mm &\leq l_{scr} \leq 240 \ mm \end{split}$
Characteristic value of embedding strength in softwood:	$f_{h,J,k} = 0.033 \cdot \rho_k \cdot d^{-0.3}$ for Joist $f_{h,H,k} = 0.082 \cdot \rho_k \cdot d^{-0.3}$ for Header
Characteristic value of embedding strength in hardwood:	$f_{h,J/H,k} = \frac{0.082 \cdot \rho_k \cdot (1 - 0.01 \cdot d)}{2.5 \cdot \cos^2 \alpha + \sin^2 \alpha}$
Characteristic value of embedding strength in Träger BauBuche:	$f_{h,J/H,k}$ according to Annex 2 of ETA-14/0354
Angle between screw axis and direction of grain:	$\alpha = 0^{\circ}$ for Joist (end grain) $\alpha = 90^{\circ}$ for Header (side grain)
For calculation of design values	k_{mod} according to EN 1995-1-1 and $\gamma_m = 1.3$

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

(d) $F_{45,Rk}$ – force acting perpendicular to direction of insertion:

$$F_{45,Rk} = min \begin{cases} F_{45,J,Rk} \\ F_{45,H,Rk} \end{cases}$$

Characteristic load bearing against direction of insertion for Joist/Header:	$F_{45,J/H,Rk} = n_{45,J/H} \cdot F_{\nu,J/H,Rk}$
with	
Load bearing capacity per joint and fastener:	$F_{v,J/H,Rk} = 2.3 \cdot \sqrt{M_{y,Rk} \cdot f_{h,J/H,k} \cdot d} + \frac{F_{ax,J/H,Rk}}{4}$
Characteristic withdrawal strength for a single screw in softwood:	$F_{ax,J/H,Rk} = 0.52 \cdot d^{0.5} \cdot l_{ef,J/H}^{0.9} \cdot \rho_k^{0.8} \cdot k_{ax}$
Characteristic withdrawal strength for a single screw in hardwood:	$F_{ax,J/H,Rk} = 2 \cdot 10^{-3} \cdot l_{ef,J/H} \cdot d^{0.66} \cdot \rho_k^{1.6} \cdot k_{\alpha}$
Characteristic withdrawal strength for a single screw in Träger BauBuche according to ETA-14/0354:	$F_{ax,J,Rk} = 11.7 \cdot d \cdot l_{ef,J}$ $F_{ax,H,Rk} = 23.3 \cdot d \cdot l_{ef,H}$
Dimension coefficient	$\begin{aligned} k_{ax} &= 0.3 + 0.7 \cdot \frac{\alpha}{45} \text{ for } 0^{\circ} \leq \alpha \leq 45^{\circ} \\ k_{ax} &= 1.0 \text{ for for } 45^{\circ} \leq \alpha \leq 90^{\circ} \end{aligned}$
Coefficient:	$k_{lpha} = 0.7$ for Joist $k_{lpha} = 1.0$ for Header
Characteristic yield moment of the screw:	$M_{y,Rk}$ according to Annex 1
Number of screws in Joist/Header:	$n_{45,J/H}$ according to Annex 2 series 150: $n_{45,J/H,max} = 28$
Effective length of threaded part in the timber member:	$l_{ef,J/H} = l_{scr,J/H} - 14 mm$ 80 mm $\leq l_{scr} \leq 240 mm$
Characteristic value of embedding strength in softwood:	$f_{h,J,k} = 0.033 \cdot \rho_k \cdot d^{-0.3}$ for Joist $f_{h,H,k} = 0.082 \cdot \rho_k \cdot d^{-0.3}$ for Header
Characteristic value of embedding strength in hardwood:	$f_{h,J/H,k} = \frac{0.082 \cdot \rho_k \cdot (1 - 0.01 \cdot d)}{2.5 \cdot \cos^2 \alpha + \sin^2 \alpha}$
Characteristic value of embedding strength in Träger BauBuche:	$f_{h,J/H,k}$ according to Annex 2 of ETA-14/0354
Angle between screw axis and direction of grain:	$\alpha = 0^{\circ}$ for Joist (end grain) $\alpha = 90^{\circ}$ for Header (side grain)
For calculation of design values	k_{mod} according to EN 1995-1-1 and $\gamma_m = 1.3$

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

$M_{2,Rk} = min$	$M_{2,J,Rk}$	
$K_{2,\varphi,ser} = \frac{1}{\frac{1}{K_{2\varphi}}}$		
Moment capacity of the Joist/Header:	$M_{2,J,Rk} = \sum F_{ax}^{i} \cdot e_{i,J} + \frac{s_{c,0,k} \cdot s_{i,j}}{3}$ $M_{2,H,Rk} = \sum F_{ax}^{i} \cdot e_{i,H} + \frac{s_{c,90,k}}{3}$ $e_{i,J/H}$ as the individual distance of the center of	$\frac{\cdot \chi_H^2}{\chi_H^2}$ ances of the tensile screws in the Joist/Heade
Rotational spring stiffness of the Joist/Header:		$ \sum_{k=1}^{i} K_{ser,s}^{i} \cdot a_{i,H} + \sum_{k=1}^{i} K_{ser,s}^{i} \cdot a_{i,H}^{2} + \frac{s_{c,90,k} \cdot x_{H}^{3}}{w \cdot 3} $ ances of the tensile screws in the Joist/Headed of the contact area
with		
Tensile force of a Joist/Header moment screw:	$ \begin{aligned} F_{ax}^{i} &= \frac{F_{ax,J/H,Rk}^{i} \cdot e_{i,J/H}}{e_{max,J/H}} \\ \text{For softwood glulam:} \\ F_{ax,J,Rk} &= 0.156 \cdot \sqrt{d} \cdot l_{ef,J}^{0.9} \cdot \rho_{k,J}^{0.8} \\ F_{ax,90,H,Rk} &= 0.52 \cdot \sqrt{d} \cdot l_{ef,H}^{0.9} \cdot \rho_{k,H}^{0.8} \\ \text{For Träger BauBuche according to ETA-14/0354:} \\ F_{ax,J,Rk} &= 11.7 \cdot d \cdot l_{ef,J} \\ F_{ax,H,Rk} &= 23.3 \cdot d \cdot l_{ef,H} \\ e_{max,J/H} \text{ as the distance of the outermost tensile screw in the Joist/Header from the center of rotation of the joint} \end{aligned} $	
Maximum value of contribution of compression:	$s_{c,90,k} = (k_a \cdot (1 - e^{-k_b \cdot w}) \cdot b + l_{dis}) \cdot f_{c,90,k} $ for Header $s_{c,0,k} = b \cdot f_{c,0,k} $ for Joist with $k_a = 1.7 \text{ and } k_b = 0.6 \text{ for softwood glulam} $ $k_a = 1.6 \text{ and } k_b = 0.15 \text{ for Träger Baubuche according to ETA-14/0354} $ w = 1 mm as the compressive deformation at the top of the contact area b as the width of the contact area $l_{dis} = min\{8 \cdot w; 40 \text{ mm}\} \text{ for softwood glulam} $ $f_{c,0,k} \text{ as the char. compression strength of the Joist parallel to the grain} $ $f_{c,90,k} \text{ as the char. compression strength of the Header perpendicular to the grain} $	
MI	EGANT®	Annex 5
		of European Technical Assessment

(to be determined	$x_{J} = \frac{a_{max,J}}{2} + \frac{n_{J} \cdot F_{ax,max}^{i}}{s_{c,0,k}} - \sqrt{\frac{\left(-a_{max,J} - \frac{2 \cdot n_{J} \cdot F_{ax,max}^{i}}{s_{c,0,k}}\right)^{2}}{4} - \frac{2 \cdot F_{ax,max}^{i}}{s_{c,0,k}} \cdot \sum_{i=1}^{n} a_{i,J}}$
iteratively):	$x_{H} = \frac{a_{max,H}}{2} + \frac{n_{H} \cdot F_{ax,max}^{i}}{s_{c,90,k}} - \sqrt{\frac{\left(-a_{max,H} - \frac{2 \cdot n_{H} \cdot F_{ax,max}^{i}}{s_{c,90,k}}\right)^{2}}{4} - \frac{2 \cdot F_{ax,max}^{i}}{s_{c,90,k}} \cdot \sum_{i=1}^{n} a_{i,H}}{a_{max,J/H}}$ as the maximum distance of the tensile screws in the Joist/Header
	connection from the upper end of the contact area $n_{J/H}$ as the number of tensile screws in Joist/Header
Spring stiffness of the screws:	$K_{ser,s}^{i} = \frac{F_{ax,J/H,Rk}^{i}}{0.5} \text{ N/mm}$

 $^{1)}K_{2,\phi}$ for the ultimate limit state shall be calculated as:

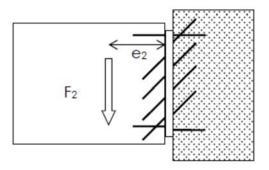
$$K_{2,\varphi} = \frac{2 \cdot K_{2,\varphi,ser}}{3 \cdot (1 + 2 \cdot \psi_2 \cdot k_{def})}$$

Where

 ψ_2 combination factor according to EN 1990 for the quasi-permanent value of the action causing the largest stress in relation to the strength

 k_{def} ... deformation factor according to EN 1995-1-1

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019



(f) Combined loading:

For combined loading, the following needs to be valid

$$\left(\frac{F_{1,Ed}}{F_{1,Rd}} + \frac{M_{2,Ed}}{M_{2,Rd}}\right)^2 + \left(\frac{F_{2,Ed}}{F_{2,Rd}}\right)^2 + \left(\frac{F_{3,Ed}}{F_{3,Rd}}\right)^2 + \left(\frac{F_{45,Ed}}{F_{45,Rd}}\right)^2 + \left(\frac{M_{tor,Ed}}{M_{tor,Rd}}\right) \le 1$$

Moments $M_{2,Ed}$ only need to be considered, if the force $F_{2,Ed}$ acts outside the MEGANT connector.

Where
$$e_2 = \frac{M_{2,Ed}}{F_{2,Ed}}$$

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

2.) Tension reinforcement

- (a) Tension perpendicular to the grain in main- and secondary beam loaded in direction of insertion F_2
 - (i) No further calculation is needed if:

$$rac{a_J}{H_J}$$
 > 0.7 and $rac{a_H}{H_H}$ > 0.7

with	
Distance of screw row to the loaded edged of the wooden member:	$a_{J/H}$ according to Annex 7
Height of secondary and main beam:	$H_{J/H}$ according to Annex 7

(ii) Tension perpendicular to the grain for timber members with $0.2 \le \frac{a_{J/H}}{H_{J/H}} \le 0.7$:

For joist and header:	$\left(\frac{F_{90,d}}{F_{90,l/H,Rd}}\right) \le 1.0$
with	
	$F_{90,J/H,Rd} = k_{J/H} \cdot k_{s,J/H} \cdot k_{r,J/H} \cdot \left[6.5 + 18 \cdot \left(\frac{a_{J/H}}{H_{J/H}} \right)^2 \right]$
	$\cdot \left(t_{ef} \cdot H_{J/H}\right)^{0.8} \cdot f_{t,90,d}$
Factor	$k_J = 0.5$ in joist and $k_H = 1.0$ in header
Factor	$k_{s,J/H} = max \left\{ 0.7 + \frac{1.4 \cdot a_{r,J/H}}{H_{J/H}} \right\}$
	MEGANT series 60: $a_{r,J/H} = 40 mm$ MEGANT series 100: $a_{r,J/H} = 80 mm$ MEGANT series 150: $a_{r,J/H} = 130 mm$
Factor	$k_{r,J/H} = \frac{n_{J/H}}{\sum_{i=1}^{n_{J/H}} \left(\frac{h_{1,J/H}}{h_{i,J/H}}\right)^2}$
Distance of screw row to the unloaded edged of the wooden member:	h_i according to Annex 7
Effective depth	$t_{ef} = min \begin{cases} B_{J/H} \\ \frac{l_{ef,J/H}}{\sqrt{2}} \end{cases}$ see Annex 7

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

The following expressions shall be used to reinforce timber members:	
For joist and header:	$\left(\frac{F_{t,90,J/H,d}}{n \cdot F_{ax,Rd}}\right) \le 1$
with	
	$F_{t,90,J/H,d} = \left[1 - 3 \cdot \left(\frac{a_{J/H}}{H_{J/H}}\right)^2 + 2 \cdot \left(\frac{a_{J/H}}{H_{J/H}}\right)^3\right] \cdot F_{90,d}$
Number of fully threaded self-tapping screws for reinforcement	n
Characteristic withdrawal strength:	$F_{ax,Rd}$ according to EN 1995-1-1 or ETA

(b) Tension perpendicular to the grain in main- and secondary beam loaded perpendicular to direction of insertion F_{45}

(iii) No further calculation is needed if:

$$rac{a_J}{B_J}$$
 > 0.7 and $rac{a_H}{B_H}$ > 0.7

with	
Distance of screw row to the loaded edged of the wooden member:	$a_{J/H}$ according to Annex 7
Width of main and secondary beam:	$B_{J/H}$ according to Annex 7

(iv) Tension perpendicular to the grain for timber members with $0.2 \le \frac{a_{J/H}}{B_{J/H}} \le 0.7$:

The following expressions shall be satisfied for timber members without reinforcement:	
For joist and header:	$\left(\frac{F_{90,d}}{F_{90,J/H,Rd}}\right) \le 1.0$
with	
	$F_{90,J/H,Rd} = k_{J/H} \cdot k_{s,J/H} \cdot k_{r,J/H} \cdot \left[6.5 + 18 \cdot \left(\frac{a_{J/H}}{B_{J/H}} \right)^2 \right] \\ \cdot \left(t_{ef} \cdot B_{J/H} \right)^{0.8} \cdot f_{t,90,d}$
Factor	$k_J = 0.5$ in joist and $k_H = 1.0$ in header

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

Factor	$k_{s,J/H} = max \begin{cases} 1 \\ 0.7 + \frac{1.4 \cdot a_{r,J/H}}{B_{J/H}} \end{cases}$
	MEGANT height $h = 310 mm$: $a_{r,J/H} = 171 mm$ MEGANT height $h = 430 mm$: $a_{r,J/H} = 285 mm$ MEGANT height $h = 550 mm$: $a_{r,J/H} = 399 mm$
Factor	$k_{r,J/H} = \frac{n_{J/H}}{\sum_{i=1}^{n_{J/H}} \left(\frac{b_{1,J/H}}{b_{i,J/H}}\right)^2}$
Distance of screw row to the unloaded edged of the wooden member:	b_i according to Annex 7
Effective depth	$t_{ef} = 48 mm$

The following expressions shall be used to reinforce timber members:	
For joist and header:	$\left(\frac{F_{t,90,J/H,d}}{n \cdot F_{ax,Rd}}\right) \le 1.0$
with	
	$F_{t,90,J/H,d} = \left[1 - 3 \cdot \left(\frac{a_{J/H}}{B_{J/H}}\right)^2 + 2 \cdot \left(\frac{a_{J/H}}{B_{J/H}}\right)^3\right] \cdot F_{90,d}$
Number of fully threaded self-tapping screws for reinforcement	n
Characteristic withdrawal strength:	$F_{ax,Rd}$ according to EN 1995-1-1 or ETA

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019

3.) MEGANT - timber to steel connections:

Main beam from steel and secondary beam as timber construction for load direction F₂:

$$F_{2,Rd} = min \begin{cases} F_{2,J,Rd} \\ F_{2,steel,Rd} \end{cases}$$

Structural analysis of timber connection:

$$F_{2,J,Rd} = min \begin{cases} F_{2,KCC,Rk}/\gamma_{M1} \\ F_{2,Rk} \cdot k_{mod}/\gamma_{M,timber} \end{cases}$$

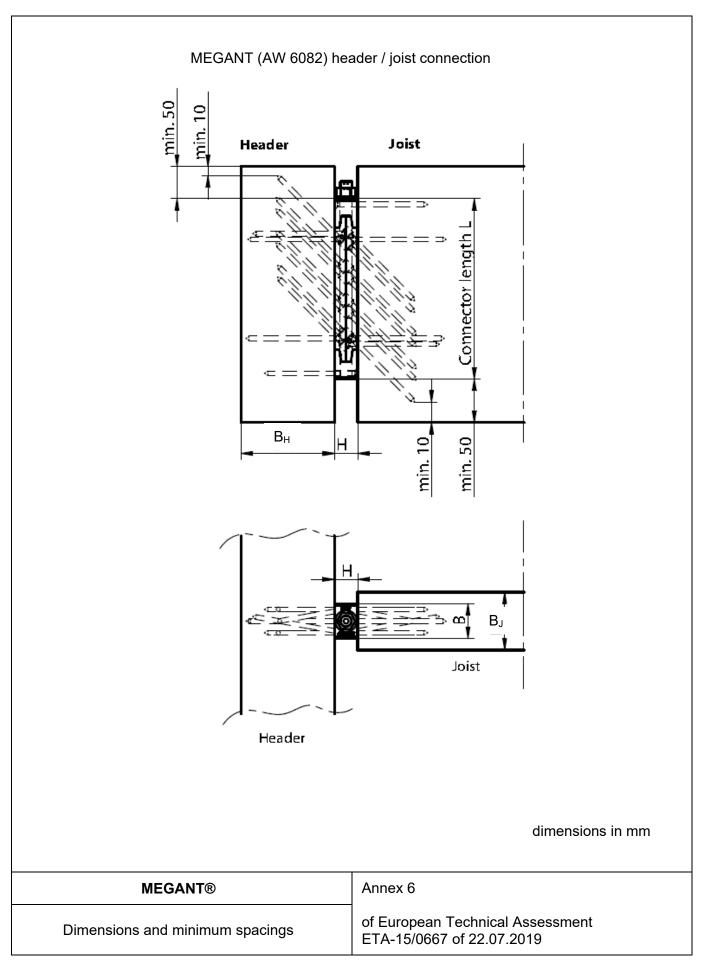
with

 $\gamma_{M1} = 1.1$ and $\gamma_{M,timber} = 1.3$

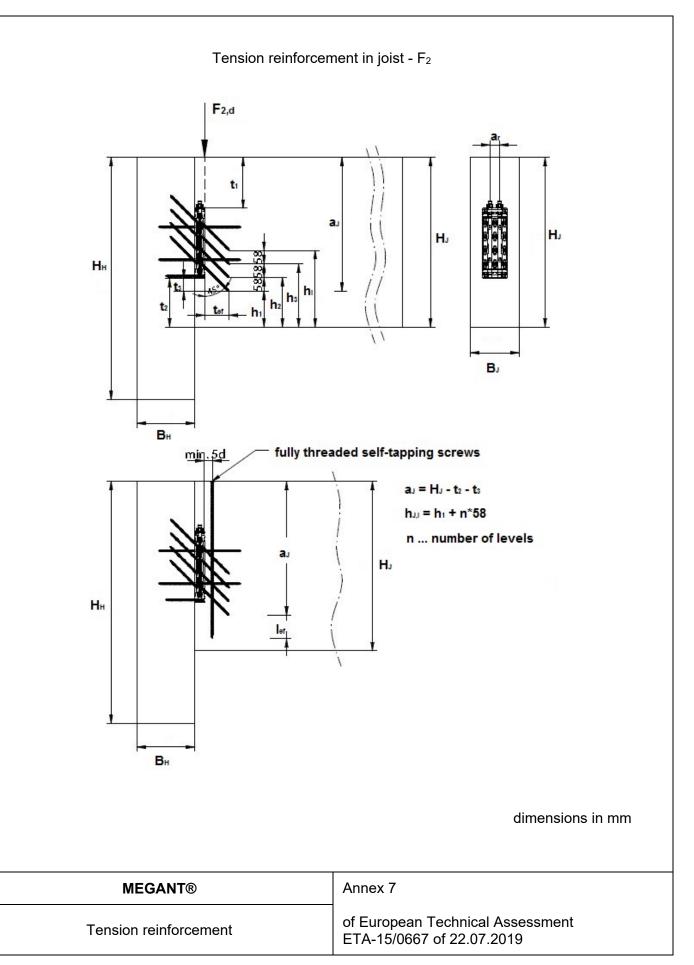
Structural analysis of steel connection:

 $F_{2,Steel,Rd} = min \begin{cases} n \cdot F_{v,Rd} \\ n \cdot F_{b,Megant,Rd} \\ n \cdot F_{b,Steelplate,Rd} \end{cases}$

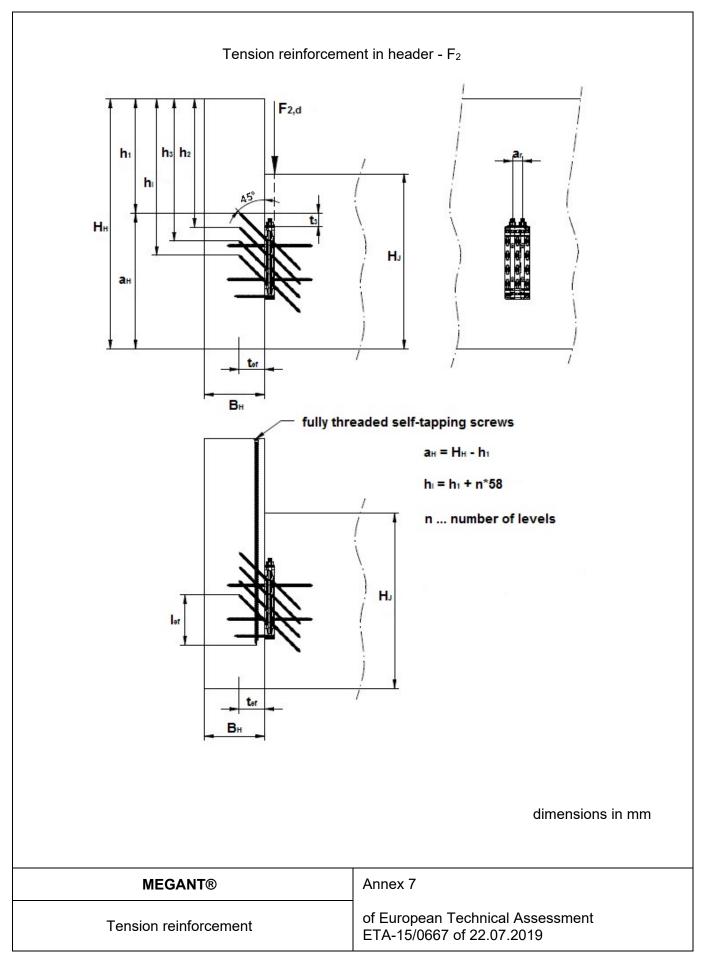
$$\begin{split} F_{v,Rd} &= \frac{n \cdot \alpha_v \cdot f_{ub,k} \cdot A_s}{\gamma_{M2}} & \text{according to EN 1993-1-8/3.6.1} \\ F_{b,Megant,Rd} &= \frac{k_1 \cdot \alpha_b \cdot f_u \cdot d_1 \cdot t}{\gamma_{M2}} & \text{according to EN 1999} \\ F_{b,Steelplate,Rd} &= \frac{n \cdot k_1 \cdot \alpha_b \cdot f_u \cdot d_1 \cdot t}{\gamma_{M2}} & \text{according to EN 1993-1-8/3.6.1} \\ \text{with} & \\ \gamma_{M2} &= 1.25 \end{split}$$

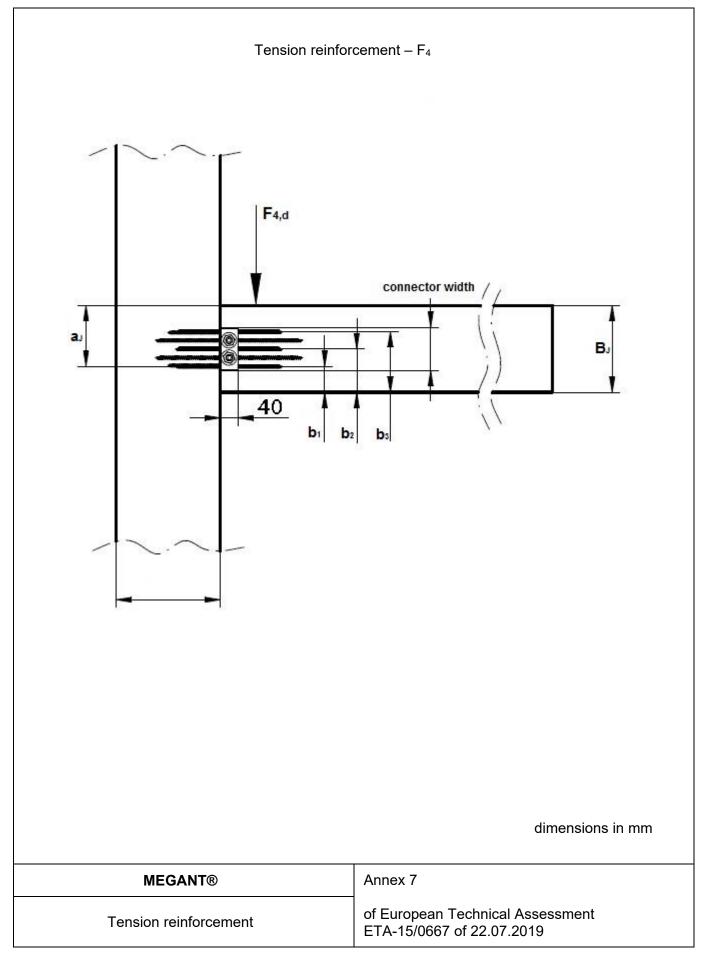

Additional loading directions have to be calculated similar, following the rules of EC3 and EC9.

4.) MEGANT - timber to concrete connections:


The connector MEGANT may be installed to members made of concrete with suitable fasteners. Design of connections with connectors in wood to concrete connections shall follow the respective Eurocode.

MEGANT®	Annex 5
Characteristic load bearing capacities	of European Technical Assessment ETA-15/0667 of 22.07.2019





OIB-205-069/13-061

Guideline for European Technical Approval ETAG 015 "Three-dimensional nailing plates", Edition November 2012, used as European Assessment Document

European Technical Assessment ETA-14/0354 of 11.07.2018 for "Träger BauBuche GL75, Beam BauBuche GL75, Poutre BauBuche GL75, Trave BauBuche GL75, Viga BauBuche GL75, Belka BauBuche GL75, Draagbalk BauBuche GL75" of Pollmeier Furnierwerkstoffe GmbH, Pferdsdorfer Weg 6, 99831 Creuzburg, Germany

EN 338 (04.2016), Structural timber - Strength classes

EN 755-2 (03.2016), Aluminium and aluminium alloys – Extruded rod/bar, tube and profiles – Part 2: Mechanical properties

EN 1993-1-8 (05.2005) +AC (12.2015) +AC (07.2009), Design of steel structures – Part 1-8: Design of joints

EN 1995-1-1 (11.2004) +AC (06.2006) +A1 (06.2008) +A2 (05.2014), Eurocode 5 – Design of timber structures – Part 1-1: General – Common rules and rules for buildings

EN 1995-1-2 (11.2004) +AC (06.2006) +AC (03.2009), Eurocode 5 – Design of timber structures – Part 1-2: General – Structural fire design

EN 1999-1-1 (05.2007) +A1 (07.2009) +A2 (12.2013), Design of aluminium structures – Part 1-1: General structural rules

EN 14080 (06.2013), Timber structures – Glued laminated timber and glued solid timber – Requirements

EN 14081-1 (02.2016), Timber structures – Strength graded structural timber with rectangular cross section – Part 1: General requirements

EN 14374 (11.2004), Timber structures – Structural laminated veneer lumber – Requirements

EN ISO 4032 (12.2012), Hexagon regular nuts (style 1) - Product grades A and B

ISO 7090 (06.2000), Plain washers, chamfered – Normal series – Product grade A

MEGANT®	Annex 8
Reference documents	of European Technical Assessment ETA-15/0667 of 22.07.2019